Домой Дизайн Известково-содовый метод умягчения и очищения воды. Специальные методы для улучшения качества воды Химические методы умягчения воды

Известково-содовый метод умягчения и очищения воды. Специальные методы для улучшения качества воды Химические методы умягчения воды

Под умягчением воды подразумевается процесс удаления из нее катионов жесткости, т.е. Са и Мg. Умягчение воды осуществляется следующими методами:

1) термическое умягчение, основанное на нагревании воды, ее дистилляции или вымораживанием;

2) реагентное, в котором находящиеся в воде ионы жесткости, связывают различными реагентами в практически нерастворимые соединения;

3) ионным обменом, основанным на фильтровании умягчаемой воды через специальные материалы, обменивающие входящие в их состав ионы натрия или водорода на катионы кальция и магния;

4) диализ;

5) комбинированный, представляющий различные сочетания перечисленных методов.

Выбор метода умягчения воды определяется ее качеством, необходимой глубиной умягчения и технико-экономическими соображениями.

Термический метод умягчения воды.

Целесообразно применять при использовании карбонатных вод, идущих на питание котлов низкого давления, а также в сочетании с реагентными методами умягчения воды. Он основан на смещении углекислотного равновесия при нагревании воды в сторону образования карбоната кальция

Са(НСО 3) 2 → СаСО 3 ↓+СО 2 + Н 2 О

Равновесие смещается за счет понижения растворимости СО 2 , вызываемого повышением температуры и давления. Кипячением можно полностью удалить СО 2 и тем самым значительно снизить карбонатную жесткость. Кроме того, снижается жесткость, определяемая сульфатом кальция. Однако, полностью удалить указанную жесткость не удается, поскольку карбонат кальция все же растворим в воде (18 мг/л). Применяется для этого метода – термоумягчитель. Время пребывания воды в нем 30-45 минут.

Реагентные методы умягчения.

Основаны на обработке воды реагентами, образующими с кальцием и магнием малорастворимые соединения Мg(ОН) 2 , СаСО 3 , Са 3 (РО 4) 2 и другие, с последующим их отделением в осветлителях. В качестве реагентов используется известь, кальцинированная сода, гидроксиды натрия, бария и другие вещества.

Умягчение воды известкованием применяют при высокой карбонатной и низкой некарбонатной жесткости. В качестве реагента используют известь, которую вводят в виде суспензии в предварительно подогретую воду. Растворяясь, известь обогащает воду ОН - и Са +2 ионами, что приводит к связыванию растворимого в воде СО 2 с образованием СО 3 -2 и переходу НСО 3 в СО 2 .

СО 2 + 2 ОН - →СО 3 -2 + Н 2 О; НСО3 - +ОН - → СО 3 –2 + Н 2 О

Повышение в обрабатываемой воде концентрации СО 3 –2 и присутствие в ней ионовСа +2 с учетом введенных с известью, приводит к осаждению СаСО 3

Са +2 + СО 3 –2 → СаСО 3 ↓.

Для ускорения процесса одновременно с известкованием применяют коагулирование.

Дозу извести определяют по формуле:

Д и = 28([СО 2 ] /22 +2 Ж к - [ Са +2 ]/20 +Д к /е к + 0.5)

Д к – доза коагулянта, е –эквивалентная масса активного вещества коагулянта,

Выражение Д к /е к – берут со знаком -, если коагулянт вводится ранее извести и +, если совместно или после.

Более глубокое умягчение воды может быть достигнуто ее подогревом, добавлением избытка реагента - осадителя и созданием контакта умягчаемой воды с ранее образовавшимся осадком.

Фосфатирование применяют для доумягчения воды. Остаточная жесткость снижается до 0.02-0.03 мг*экв /л. Фосфатированием достигается также большая стабильность воды, снижение ее коррозионного действия на металлические трубопроводы и предупреждаются отложения карбонатов на внутренней поверхности стенок труб. В качестве фосфатирующего реагента используется гексаметафосфат натрия, триполифосфат натрия. Фосфатный метод умягчения при использовании тринатрийфосфата является наиболее эффективным реагентным методом. Химизм процесса описывается уравнением:

3Са(НСО 3) 2 /3 Мg(НСО 3) 2 + 2 Nа 3 РО 4 = Са 3 (РО 4) 2 / Мg 3 (РО 4) 2 +6 NаНСО 3 .

Фосфатное умягчение осуществляется при подогреве воды до 105 –150 0 С. Образующиеся осадки Са 3 (РО 4) 2 и Мg 3 (РО 4) 2 хорошо адсорбируют их умягченной воды коллоиды и кремниевую кислоту, поэтому этот метод применяется для подготовки питательной воды для котлов среднего и высокого давления.

Умягчение воды диализом.

Диализ – метод разделения растворенных веществ, значительно отличающихся молекулярными массами. Он основан на разных скоростях диффузии этих веществ через полупроницаемую мембрану, разделяющую концентрированные и разбавленные растворы. Диализ осуществляется в мембранных аппаратах с нитро - и ацетатцеллюлозными мембранами. Эффективность полупроницаемой мембраны определяется высокими значениями селективности и водопроницаемости, которые она должна сохранять в течение продолжительного времени работы.

Магнитная обработка воды.

В настоящее время для борьбы с накипеобразованием и инкрустацией успешно применяют магнитную обработку воды. Ее суть заключается в действии магнитного поля на ионы солей, растворимых в воде. Под влиянием магнитного поля происходит поляризация и деформация ионов, сопровождающееся уменьшением их гидратации, повышающей вероятность их сближения и образование центров кристаллизации. Сущность метода состоит в том, что при пересечении водой магнитных силовых линий, накипеобразователи выделяются не на поверхности нагрева, а в массе воды. Образующиеся рыхлые осадки удаляют при продувке.

Умягчение воды катионированием.

Сущность ионного обмена заключается в способности ионитов поглощать из воды положительные и отрицательные ионы в обмен на эквивалентное количество ионов ионита. Процесс водообработки методом ионного обмена, в результате которого происходит обмен катионов – называют катионированием.

Катиониты в воде разбухают, увеличиваются в объеме. Энергия вхождения в катионит различных катионов по величине их динамической активности может быть охарактеризована следующим рядом:

Nа < NН 4+ < К + < Мg +2 < Са +2 < Аl +3

Е р = (Q* Ж и)/(а *h к), где Ж и – жесткость воды; Q – количество умягченной воды, м 3 ;

а – площадь катионитового фильтра, м 2 ; h к – высота слоя катионита, м.

Длительность работы фильтра определяется по формуле:

Т к = Е р * h к /V к *Ж и. где V к – скорость фильтрования воды.

В технике подготовки воды применяют органические катиониты. Они содержат функциональные химические активные группы, Н + которых способны замещаться другими катионами: четвертичные амины NН 3 ОН, сульфогруппы НSО 3 , карбоксильные группы СООН. Группа НSО 3 обладает сильнокислотными, а СООН – слабокислотными свойствами. В зависимости от содержания функциональных групп катиониты делят на слабокислотные и сильнокислотные. Сильнокислотные обменивают катионы в щелочной, нейтральной и кислой среде, слабокислотные – только в щелочной среде. Качество катионитов характеризуется их физическими свойствами, химической и термической стойкостью, рабочей обменной емкостью. Фракционный состав характеризует эксплуатационные свойства катионита. Рабочая обменная емкость зависит от вида извлекаемых катионов, соотношения солей в умягченной воде, рН, высоты слоя катионита, объема фильтра, режима эксплуатации, удельного расхода регенерирующего реагента.

Натрийкатионирование.

Этот метод применяется для умягчения воды с содержанием взвешенных веществ н/б 8 мг/л и цветности н/б 30 0 .Жесткость воды снижается при одноступенчатом катионировании до 0.05 –0.1, при двухступенчатом – до 0.01 мг*экв /л. Процесс натрийкатионирования описывается следующими уравнениями:

2 Nа[К] + Са(НСО 3) 2 / Мg(НСО 3) 2 ↔Са[К] 2 / Мg[К] 2 +2 NаНСО 3

2 Nа[К] + СаСl 2 / Мg Сl 2 ↔Са[К] 2 / Мg[К] 2 + 2 NаСl, где [К] – нерастворимая матрица полимера.

После истощения рабочей обменной емкости катионита он теряет способность умягчать воду и его необходимо регенерировать.

Процесс умягчения воды на катионитовых фильтрах состоит из следующих операций:

Фильтрование воды через слой катионита до момента достижения предельно допустимой жесткости в фильтрате;

Взрыхление слоя катионита восходящим потоком воды;

Спуска водяной подушки во избежание разбавления регенерационного раствора;

Регенерация катионита посредством фильтрования соответствующего раствора;

Отмывка катионита.

Выбор метода диктуется требованиями, предъявляемыми к умягченной воде, Свойствами исходной воды и технико-экономическими соображениями. Регенерация осуществляется 5% раствором хлористого натрия в количестве 1.2 м 3 раствора на 1 м 3 смолы, затем остаточное количество в виде 8% раствора. Процесс регенерации описывается следующей реакцией:

Са[К] 2 / Мg[К] 2 + 2 NаСl↔2 Nа[К] + СаСl 2 / Мg Сl 2

Хлористый натрий применяется из-за его доступности, дешевизны, а также вследствие того, что получают при этом хорошо растворимые соли СаСl 2 и МgСl 2 , легко удаляемые с регенерационным раствором и водой.

Водород-натрийкатионитовое умягчение воды.

Обработка воды Н-катионированием основана на фильтрации ее через слой катионита, содержащего в качестве обменных ионов водород.

2 Н[К] + Са(НСО 3) 2 / Мg(НСО 3) 2 ↔Са[К] 2 / Мg[К] 2 +2Н 2 О +СО 2

2 Н[К] + NаСl↔2 Nа[К] + НСl; 2 Н[К] +Nа 2 SО 4 ↔2 Nа[К] +Н 2 SО 4

При Н-катионировании воды значительно снижается ее рН из –за кислот, образующихся в фильтрате. Выделяющийся при Н-катионировании СО2 можно удалить дегазацией и в растворе останутся минеральные кислоты в количествах, эквивалентных содержанию SО 4 -2 и Сl - в исходной воде. Из приведенных реакций видно, что щелочность воды в процессе ионного обмена не изменяется. Следовательно, пропорционально смешивая кислый фильтрат после Н-катионитовых фильтров со щелочным фильтратом после Nа – катионитовых фильтров можно получить умягченную воду с различной щелочностью. В этом заключается сущность и преимущества Н- Nа – катионирования. Применяют параллельное, последовательное и смешанное Н- Nа – катионирования. При параллельном – 1 часть воды идет через Nа – катионитовый фильтр, другая – через Н-катионитовый. Образующиеся воды смешивают в таких пропорциях, чтобы щелочность не превышала 0.4 мг*экв/л. При последовательном – часть воды пропускают через Н-катионитовый, затем смешивают с остальной водой и подают на Nа – катионитовый фильтр. Это позволяет полнее использовать обменную емкость Н-катионита и снизить расход кислоты на регенерацию. Смешанное катионирование осуществляется в одном фильтре, загруженном вверху - Н-катионитом, внизу - Nа – катионитом.

Жёсткость воды - совокупность химических и физических свойств воды, связанных с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния. Вода с большим содержанием таких солей называется жёсткой, с малым содержанием - мягкой. Различают временную жёсткость, образованную гидрокарбонатами и постоянную жёсткость, вызванную присутствием других солей.

Известно, что важнейшей характеристикой пресной воды является её жесткость. Под жесткостью понимают количество миллиграмм-эквивалентов ионов кальция или магния в 1 л воды. 1 мг÷экв/л жесткости соответствует содержанию 20,04 мг Са2+ или 12,16 мг Mg2+. По степени жесткости питьевую воду делят на очень мягкую (0–1,5 мг÷экв/л), мягкую (1,5–3 мг÷экв/л), средней жесткости (3–6 мг÷экв/л), жесткую (6–9 мг÷экв/л) и очень жесткую (более 9 мг÷экв/л). Наилучшие вкусовые свойства имеет вода с жесткостью 1,6–3,0 мг÷экв/л, а, согласно СанПиН 2.1.4.1116–02, физиологически полноценная вода должна содержать солей жесткости на уровне 1,5–7 мг÷экв/л. Однако при жесткости воды выше 4,5 мг÷экв/л происходит интенсивное накопление осадка в системе водоснабжения и на сантехнике, нарушается работа бытовых приборов. Обычно умягчение проводят до остаточной жесткости 1,0–1,5 мг÷экв/л, что соответствует зарубежным нормативам по эксплуатации бытовой техники. Вода, имеющая жесткость ниже 0,5 мг÷экв/л является коррозионно-активной по отношению к трубам и котлам, способна вымывать отложения в трубах, накапливающиеся при долгом застаивании воды в системе водоснабжения. Это влечет за собой появление неприятных запаха и вкуса воды.

осуществляют методами: термическим, основанным на нагревании воды, её дистилляции или вымораживании; реагентными, при которых находящиеся в воде ионы Са (II) и Mg (II) связывают различными реагентами в практически нерастворимые соединения; ионного обмена, основанного на фильтровании умягчаемой воды через специальные материалы, обменивающие входящие в их состав ионы Na (I) или Н (I) на ионы Са (II) и Mg (II), содержащиеся в воде; диализа; комбинированным, представляющим собой различные сочетания перечисленных методов.

Выбор метода умягчения определяется качеством воды, необходимой глубиной умягчения и технико-экономическими соображениями, представленными в таблице снизу.

натрий-катионирование - процесс извлечения из воды ионов жесткости - кальция и магния и замена их на ионы натрия.
Кальций и магний составляют жесткость воды, следовательно, после их извлечения вода умягчается.
Ионы натрия находятся непосредственно в смоле (засыпке). В процессе работы установки происходит обмен ионами, натрий поступает в воду, а кальций и магний - в смолу. По истечении некоторого времени смолу необходимо регенерировать, т.е. восстановить ее свойства. Для этого через нее пропускают раствор поваренной соли, и происходит обратный процесс - натрий насыщает смолу, а кальций и магний поступают в раствор, который после сливается.

При пропуске воды сверху вниз через слой катионита происходит её умягчение, заканчивающееся на некоторой глубине. Слой катионита, умягчающий воду, называют работающим слоем или зоной умягчения. При дальнейшем фильтровании воды верхние слои катионита истощаются и теряют обменную способность. В ионный обмен вступают нижние слои катионита и зона умягчения постепенно опускается. Через некоторое время наблюдаются три зоны: работающего, истощенного и свежего катионита. Жесткость фильтрата будет постоянной до момента совмещения нижней границы зоны умягчения с нижним слоем катионита. В момент совмещения начинается «проскок» катионов Са+2 и Мg+2 и увеличение остаточной жесткости, пока она не станет равной жесткости исходной воды, что свидетельствует о полном истощении катионита. Рабочую обменную емкость фильтра Ер г÷экв/ м3, можно выразить так: Ер = QЖи; Ер = ер Vк.

Объем загруженного в фильтр катионита в набухшем состоянии Vк = аhк.

Формула для определения рабочей обменной емкости катионита, г÷экв/ м3: ер = QЖи /аhк; где Жи - жесткость исходной воды, г÷экв/ м3; Q - количество умягченной воды, м3; а - площадь катионитового фильтра, м2; hк - высота слоя катионита, м.Обозначив скорость фильтрования воды в катионитовом фильтре vк, количество умягченной воды можно найти по формуле: Q = vк aTk = ераhк /Жи; откуда длительность работы катионитового фильтра (межрегенерационный период) находим по формуле: Tk = ерhк /vк Жи.

По исчерпании рабочей обменной способности катионита его подвергают регенерации, т.е. восстановлению обменной емкости истощенного ионообменника путем пропуска раствора поваренной соли.

Ионообменные смолы нашли широкое применение во всем мире в устройствах по водоочистке. Это мелкие шарики из полимерных материалов, насыщенных ионами, способные изымть из воды различные ионы, взамен отдавая свои; их для удобства назвали "ионообменными смолами", хотя правильное научное название их - "иониты". По структуре иониты подразделяются на гелевые способные к ионообмену только в набухшем состоянии, макропористые и промежуточной структуры. Если иониты обменивают анионы - это аниониты, если катионы - катиониты.

Аниониты классифицируются как сильноосновные (обмен анионов происходит при любых значениях рН), слабоосновные (обмен анионов из кислот - рН 1-6), смешанной активности. Катионоты бывают сильной кислотности, способные к ионообмену при любых значениях рН, и слабокислотные при рН больше 7.

Приведем характеристики некоторых катионоообменников. Среди сильнокислотных катионообменников отечественного производства, разрешенных к применению для хозяйственно-питьевого водоснабжения, можно выделить КУ-2–8чС. Получают его сульфированием гранульного сополимера стирола с 8% дивинилбензола. КУ–2–8чС по структуре и свойствам близок к следующим зарубежным сульфокатионитам особой степени чистоты: амберлайту IRN-77 (США), зеролиту 325 NG (Англия), дауэксу HCR-S-Н (США), дуолайту ARC-351 (Франция), вофатиту RH (Германия). По внешнему виду - сферические зерна от желтого до коричневого цвета, размером 0,4–1,25 мм, удельный объем не более 2,7 см3/г. Полная статическая обменная емкость не менее 1,8 г÷экв/л, мин, динамическая обменная емкость с полной регенерацией не менее 1,6 г÷экв/л.

В настоящее время нашли широкое применение сильнокислотные катиониты фирмы Пьюролайт: C100, С100Е, С120Е (аналоги отечественных смол КУ-2–8, КУ–2–8чС). Применяется ионообменная смола фирмы Пьюролайт С100Е Аg (обменная емкость 1,9 г÷экв/л, насыпная масса 800–840 г/л), представляющая собой серебросодержащий катионит для водоумягчения, обладающий бактерицидным действием. Существует отечественный аналог КУ-23С - макропористый катионит бактерицидного действия (статическая обменная емкость 1,25 г÷экв/л, насыпная масса 830–930 г/л).

Применяется для умягчения питьевой воды как в промышленности, так и в быту катионит Пьюрофайн С100ЕF - он имеет ряд преимуществ по сравнению с общепринятыми смолами для водоумягчения. Обладает намного большей рабочей емкостью при обычных скоростях потока, повышенной рабочей емкостью при высоких скоростях потока, при меняющемся и прерывающемся потоке. Минимальная общая обменная емкость 2,0 г÷экв/л. Особенность катионита С100ЕF состоит в том, что он требует меньшего объема и количества регенеранта (NaCl).

Применяется сильнокислотный катионит IONAС/С 249 для умягчения воды бытового и муниципального применения. Обменная емкость 1,9 г÷экв/л.

Умягчение воды натрий-катионитовым методом на указанных смолах (жесткость воды снижается при одноступенчатом натрий-катионировании до 0,05...0,1, при двухступенчатом - до 0,01 мг÷экв/л) описывается следующими реакциями обмена:
(cм. печатную версию)

После истощения рабочей обменной емкости катионита он теряет способность умягчать воду и его необходимо регенерировать. Процесс умягчения воды на катионитовых фильтрах слагается из следующих последовательных операций: фильтрование воды через слой катионита до момента достижения предельно допускаемой жесткости в фильтрате (скорость фильтрования в пределах 10...25 м/ч); взрыхление слоя катионита восходящим потоком умягченной воды, отработанного регенерата или отмывных вод (интенсивность потока 3...4 л/(см2); спуска водяной подушки во избежание разбавления регенерирующего раствора; регенерации катионита посредством фильтрования соответствующего раствора (скорость фильтрования 8...10 м/ч). На регенерацию обычно затрачивают около 2ч, из них на взрыхление - 10...15, на фильтрование регенерирующего раствора - 25...40, на отмывку - 30...60 мин.

Умягчение воды – процесс понижения жесткости. Жесткость воды обусловлена наличием солей кальция и магния. Для снижения жесткости воды применяют следующие методы: реагентный; катионитовый; электродиализ; мембранные технологии.

Реагентные методы умягчения воды основаны на переводе ионов кальция и магния в малорастворимые и легко удаляемые соединения с помощью химических веществ. Из реагентных способов умягчения наиболее распространен известково − содовый метод. Сущность его состоит в переводе солей Ca 2+ и Mg2+ в малорастворимые соединения CaCO 3 и Mg(OH) 2 , выпадающие в осадок. При известково − содовом методе процесс проводят в две стадии. Первоначально из воды удаляют органические примеси и значительную часть карбонатной жесткости, используя соли алюминия или железа с известью. После этого вводят соду. Более глубокое умягчение воды может быть достигнуто ее подогревом.

Содово−натриевый метод применяют для умягчения воды, карбонатная жесткость которой немного больше некарбонатной.

Бариевый метод умягчения воды применяют в сочетании с другими методами. Вначале вводят барий − содержащие реагенты (Ba(OH) 2 , BаCO 3 , BaAl 2 O 4) для устранения сульфатной жесткости, затем после осветления воду обрабатывают известью и содой для доумягчения. Из-за высокой стоимости реагентов этот метод применяют очень редко.

Фосфатирование применяют для доумягчения воды, после реагентного умягчения известково−содовым методом, что позволяет получить остаточную жесткость 0,02−0,03 мг-экв/л. Такая глубокая доочистка позволяет в некоторых случаях не прибегать к катионитовому умягчению. Фосфатное умягчение обычно осуществляется при подогреве воды до 105−150 ◦ С. Из-за высокой стоимости тринатрийфосфата фосфатный метод используется для доумягчения воды, прошедшей предварительное умягчение известью и содой.

Катионитовый метод основан на способности ионообменных материалов обменивать присутствующие в воде катионы кальция и магния на обменные катионы натрия или водорода. В качестве катионитов применяют органические катиониты искусственного происхождения. Катионитовый метод позволяет достичь глубокого умягчения воды.

N-катионитовый метод применяют для умягчения воды с содержанием взвеси не более 8 мг/л и цветностью не более 30 град. Жесткость воды снижается при одноступенчатом Na- катионировании до 0,05…,1, при двухступенчатом – до 0,01 мг − экв/л. Процесс Na- катионирования описывается следующими реакциями обмена:

2Na[K] + Ca (HCO 3) ↔ Ca[K] +2NaHCO 3 ,

где [K] – нерастворимая матрица полимера.

После истощения рабочей обменной емкости катионита он теряет способность умягчать воду и его необходимо регенерировать. Процесс умягчения воды на катионитовых фильтрах слагается из следующих последовательных операций: фильтрование воды через слой катионита до момента достижения предельно допускаемой жесткости в фильтрате; взрыхление слоя катионита восходящим потоком умягченной воды; спуск водяной подушки во избежание разбавления регенерирующего раствора; регенерация катионита посредством фильтрования соответствующего раствора; отмывка катионита неумягченной водой.


Наибольшее практическое применение нашло сочетание процессов

Н – Na − катионирования, в результате чего может быть достигнута требуемая щелочность или кислотность воды. Процесс Н – Na-катионирования может осуществляться по схемам: параллельное Н– Na-катионирование, последовательное Н – Na − катионирование и совместное Н – Na − катионирование.

Электродиализ – метод разделения растворенных веществ, значительно отличающихся молекулярными массами. Он основан на разных скоростях диффузии этих веществ через полупроницаемую мембрану, разделяющую концентрированный и разбавленный растворы. Диализ осуществляется в мембранных аппаратах с нитро − и ацетатцеллюлозными пленочными мембранами.

Опреснение и обессоливание воды. Существующие методы опреснения и обессоливания воды подразделяются на две группы: с изменением и без изменения агрегативного состояния воды. К первой группе методов относят дистилляцию, замораживание, газогидратный метод; ко второй группе – ионный обмен, электродиализ, обратный осмос, гиперфильтрацию.

Дистилляционный метод основан на способности воды при нагревании испаряться и распадаться на пресный пар и соленый рассол. При нагревании соленой воды до температуры более высокой, чем температура кипения, вода начинает кипеть. Образовавшийся пар при давлении менее 50кг/см 2 практически не способен растворять содержащиеся в опресняемой воде соли, поэтому при его конденсации получается пресная вода.

Ионообменный метод опреснения и обессоливания основан на последовательном фильтровании воды через Н − катионитовый и ОН - − анионитовый фильтры. Вода, содержащая NaCl, обессоливается по следующим схемам:

Н[K] + NaCl ↔ Na[K] +HCl.

OH[A] +HCl ↔ Cl[A] + H 2 O

На ионообменные установки подается вода, содержащая соли до 3,0 г/л, сульфаты и хлориды – до 5 мг/л, взвешенных веществ – не более 8 мг/л и имеющая цветность не выше 30 град и перманганатную окисляемость до 7 мгО 2 /л.

В соответствии с необходимой глубиной обессоливания воды применяют одно-, двух- и трехступенчатые установки.

В одноступенчатых ионитовых установках воду последовательно пропускают через группу фильтров с сильнокислотным Н − катионитом, а затем через группу фильтров со слабоосновным анионитом: свободный диоксид углерода удаляется в дегазаторе, который устанавливается после катионитовых или анионитовых фильтров. В каждой группе должно быть не менее двух фильтров.

Ионитовые установки с двухступенчатой схемой обессоливания воды состоят из Н −катионитовых и анионитовых фильтров первой ступени (со слабоосновным анионитом) дегазатора для удаления свободной углекислоты, Н − катионитовых и анионитовых фильтров второй ступени (с сильноосновным анионитом). Анионитовые фильтры первой ступени задерживают анионы сильных кислот, второй ступени – анионы слабых кислот (органических кислот и кремневой кислоты).

В установках с трехступенчатой схемой на третьей ступени применяют фильтр со смешанной загрузкой катионита и анионита или Н − катионитовые фильтры третьей ступени и за ними анионитовые фильтры третьей ступени с сильноосновным анионитом.

Электродиализным называется процесс удаления из раствора ионов растворенных веществ путем избирательного их переноса через мембраны, селективные к этим ионам, в поле постоянного электрического тока.

При наложении постоянного электрического поля на раствор ионизированных веществ (электролитов) возникает направленное движение ионоврастворенных солей, а также ионов H + и ОН - . Причем катионы движутся к катоду, а анионы – к аноду. Если раствор разделить на секции с помощью специальных мембран, проницаемых только для катионов или только для анионов, то катионы, двигаясь к катоду, будут свободно проходить через катионитовую мембрану. Для анионов же она практически непроницаема. Анионы, пройдя через анионитовую мембрану, будут двигаться к аноду. Таким образом раствор разделится на обессоленную воду, находящуюся между мембранами, и концентрированные рассолы – щелочной католит и кислый анолит.

В настоящее время для обессоливания воды используются многокамерные плоскорамерные аппараты.

Область применения электродиализа ограничивается солесодержанием растворов 0,5 − 10 г/л, так как при меньших концентрациях падает проводимость растворов и уменьшается эффективность использования электроэнергии, а при больших − процесс становиться экономически не выгоден вследствие существенного роста энергозатрат, так как затраченная электроэнергия пропорциональна количеству удаляемых ионов.

Опреснение воды гиперфильтрацией заключается в фильтровании соленой воды через специальные полупроницаемые мембраны, которые пропускают воду, а задерживают ионы растворенных в ней солей. При этом необходимо создать избыточное давление для фильтрования воды через мембрану.

Обезжелезивание воды. В природной воде, особенно в воде подземных источников в больших количествах встречается железо в растворенном виде и часто, марганец. Норма содержания в питьевой воде для железа по СанПиН 2.1.4.1074 − 01 составляет 0,3 мг/л и 0,1 мг/л для марганца.

Железо находится в воде в форме:

Двухвалентного железа – в виде растворенных ионов Fe 2+ ;

Трехвалентного;

Органического железа (в виде растворимых комплексов с природными органическими кислотами (гуматов));

Бактериального железа – продукта жизнедеятельности железобактерий (железо находится в оболочке).

В подземных водах присутствует в основном растворенное двухвалентное железо в виде ионов Fe 2+ . Трехвалентное железо появляется после контакта такой воды с воздухом и в изношенных системах водораспределения при контакте воды с поверхностью труб.

В поверхностных водах железо находится в трехвалентном состоянии, а также входит в состав органических комплексов и железобактерий. Если в воде присутствует только трехвалентное железо в виде взвеси, то хватает простого отстаивания или фильтрации.

Для удаления двухвалентного железа и марганца сначала их переводят в нерастворимую форму, окисляя их кислородом воздуха, хлором, озоном или перманганатом калия с последующей фильтрацией через механический фильтр с песчаной, антрацитовой или гравийной загрузкой. Процесс окисления и формирования хлопьев достаточно длителен.

2 Fe 2+ +О 2 +2Н + =2 Fe 3+ +2ОН -

Fe 3+ +ОН -= Fe(ОН) 3 ↓.

Принципиально новыми продуктами, появившимися в последнее время, являются каталитические загрузки, позволяющие проводить обезжелезивание и деманганацию с высокой эффективностью. К таким загрузкам относятся Бирм (Birm), пиролюзит, магнетит, Гринсенд (Manganese Greensand, MZ−10) и МТМ. Эти природные материалы содержат перманганат марганца и пм фильтрации через эти загрузки происходит окисление железа и марганца, перевод их в нерастворимую гидроокись, которая осаждается на загрузке. Пленка из окислов марганца расходуется на окисление железа и марганца, и поэтому ее необходимо восстанавливать. Для этого загрузку периодически обрабатывают раствором перманганата калия либо дозируют его в воду с помощью системы пропорционального дозирования перед поступлением ее в фильтр.

Фторирование и обесфторивание воды. Недостаток фтора в воде так же как, и его избыток оказывает негативное воздействие на здоровье человека. Оптимальное содержание фтора в воде 0,7 − 1,5 мг/л.

Обесфторивание воды осуществляется с применением следующих методов: реагентный, фильтрование через фторселективные материалы, к которым относится: активированный оксид алюминия; фосфатсодержащие сорбенты; магнезиальные сорбенты (оксифториды магния); активированные угли; алюмомодифицированные материалы.

При реагентном методе обесфторивания воды применяются следующие реагенты: сульфат алюминия, полиоксихлориды алюминия.

Дезодорация воды. Запахи и привкусы воды обусловлены присутствием в ней микроорганизмов, некоторых неорганических (сероводород и железо) и органических веществ. Иногда органолептические свойства воды ухудшаются при передозировке реагентов или при неправильной эксплуатации водоочистных сооружений. Универсальных методов дезодорации не существует, но использование некоторых из них в сочетании обеспечивают требуемую степень очистки. Если вещества, вызывающие неприятные привкусы и запахи, находятся во взвешенном и коллоидном состоянии, то хорошие результаты дает их коагулирование. Привкусы и запахи, обусловленные неорганическими веществами, которые находятся в растворенном состоянии, извлекают дегазацией, обезжелезиванием, обессоливанием. Запахи и привкусы, вызванные органическими веществами, отличаются большой стойкостью. Их извлекают путем оксидации и сорбции. Для устранения запахов и привкусов, вызванных находящимися в воде микроорганизмами, применяют окисление с последующей сорбцией веществ. Запахи и привкусы природной воды могут быть устранены совместно с хлорированием или озонированием, а также окислением перманганатом калия. Действие окислителей эффективно лишь по отношению к ограниченному числу загрязнений. Недостатком окислительного метода является необходимость дозирования окислителя.

Подготовка воды в оборотных системах охлаждения. Оборотные системы промышленных предприятий обеспечиваются водой для охлаждения, которая перекачивается из искусственного охладителя, где вода отдает тепло воздуху. В оборотных системах вода охлаждается в градирнях, брызгальных бассейнах, прудах – охладителях.

Вода, циркулирующая в оборотной системе охлаждения, подвергается физико − химическим воздействиям: упариванию, нагреванию, охлаждению, аэрации, многократному контакту с охлаждаемой поверхностью в результате этого изменяется ее состав. Особенно часто нарушается нормальная работа циркуляционных систем в результате появления на стенках теплообменных аппаратов накипи, биологических обрастаний, коррозии металлических элементов систем. Отложения на стенках аппаратов и труб вызывают также увеличение потерь напора при движении по ним воды, ухудшение условий теплопередачи и уменьшение расходов охлаждающей воды, что приводит к снижению эффекта охлаждения, нарушению технологических режимов работы теплообменных аппаратов. Потери воды за счет испарения и разбрызгивания компенсируются добавочной водой из источника.

Потери воды на испарение Q 1 определяют по формуле:

Q 1 =k 1 ∆tQ o ,

где k 1 – коэффициент, зависящий от температуры воздуха; ∆t − разность температур до и после охлаждения; Q o – расход охлаждаемой воды, м 3 /ч.

Потери воды из системы на разбрызгивание Q 2 зависят от типа, конструкции и размеров охладителя и определяются по формуле:

где k 2 – коэффициент потерь воды на разбрызгивание.

Необходимость обработки охлаждающей воды для борьбы с отложениями накипи возникает в системах оборотного водоснабжения. Основным соединением, встречающимся в составе накипи в охлаждающих системах, является карбонат кальция CaCO 3 . Для предотвращения образования карбоната кальция применяют следующие методы обработки воды:

1. Освежение оборотной воды, т.е. непрерывное добавление в систему свежей воды с меньшей карбонатной жесткостью и сбросом (продувкой) части отработавшей воды.

2. Введение в добавочную воду фосфатов, тормозящих процесс кристаллизации CaCO 3 .

3. Подкисление воды. При этом карбонатная жесткость свежей воды переходит в некарбонатную, соли которой не выпадают в осадок, что приводит к снижению рН и возрастанию концентрации свободной углекислоты СО 2 .

4. Умягчение воды в целях снижения содержания ионов Са 2+ и Мg 2+ , которые в виде нерастворимых солей удаляются из воды отстаиванием при известковании или в результате катионирования.

5. Рекарбонизация оборотной воды – возмещение потерь равновесной углекислоты.

6. Магнитная акустическая обработка воды.

Для борьбы с развитием в оборотных системах биологических обрастаний наибольшее распространение получила обработка воды хлором и медным купоросом.

Системы охлаждения теплообменных аппаратов подвержены процессам электрохимической и биологической коррозии. Предотвращения коррозионного действия воды может быть достигнуто одним из следующих способов:

1. Нанесение защитных покрытий на омываемые водой металлические поверхности.

2. Удаление из воды коррелирующих агентов (кислорода, сероводорода, свободной углекислоты).

3. Нанесение карбонатной, силикатной или фосфатной пленки на внутренние поверхности труб.

Умягчить воду - значит удалить из нее кальций и магний. Об­щая жесткость воды, подаваемой водопроводами для хозяйствен­но-питьевых нужд, не должна превышать 7 мг-экв/дм3, а в особых случаях, по согласованию с органами санитарно-эпидемиологичес­кой службы, не более 10 мг-экв/дм3. Норма жесткости питатель­ной воды парогенераторов может достигать 0,05 мг-экв/дм3. В за­висимости от качества исходной воды и требуемого эффекта сни­жения жесткости применяют реагентный, термохимический, ионитовый методы умягчения или различные комбинации их.

Реагентное умягчение. Реагентные методы основаны на способ­ности катионов Са2+ и Mg2+ образовывать нерастворимые и мало­растворимые соединения при обработке воды реагентами. В ка­честве реагентов наиболее часто используются известь и сода.

Декарбонизация воды только известкованием применяется в тех случаях, когда требуется одновременное снижение жесткости и щелочности воды.

Известь совместно с содой применяют для умягчения воды, в которой кальций и магний содержатся в сочетании с анионами сильных кислот.

Теоретический предел умягчения воды определяется раствори­мостью карбоната кальция и гидроксида магния. Растворимость карбоната кальция в монорастворе при температуре 0°С равна 0,15 мг-экв/дм3, а при температуре 80°С - 0,03 мг-экв/дм3; для гидроксида магния - соответственно 0,4 и 0,2 мг-экв/дм3.

Как СаС03, так и Mg(OH)2 обладают способностью образовы­вать пересыщенные растворы, которые лишь весьма медленно приближаются к равновесному состоянию даже при контакте с твердой фазой образующегося осадка. На практике нецелесообраз­но длительно выдерживать воду в водоумягчительных аппаратах до наступления равновесного состояния. Поэтому вода, умягчен­ная известкованием (если жесткость вся карбонатная) или извест - ково-содовым методом, обычно имеет остаточную жесткость не менее 0,5-1 мг-экв/дм3.

Глубина умягчения зависит от наличия в обработанной воде избытка осаждаемых ионов и осадительных реагентов. Так, при 40°С, солесодержании воды до 800 мг/дм3, наличии в ней ионов Са2+ в количестве 0,7-1,0; 1-3 и > 3 мг-экв/дм3 остаточная кар­бонатная жесткость в отсутствие замедлителей кристаллизации обычно не превышает 0,5-0,8; 0,6-0,7 и 0,5-0,6 мг-экв/дм3 соот­ветственно, а < 1,2; Щгидр < 0,4 и Жо6щ < 1,0 мг-экв/дм3. При солесодержании 800-2000 мг/дм3 Щ0бЩ = 2,0-2,2 мг-экв/дм3, Щгидр < 0,5-0,8 мг-экв/дм3 и Жобщ < 2,0 мг-экв/дм3. Здесь в под­строчнике «общ» и «гидр» обозначают соответственно «общая» и «гидратная».

Следует отметить, что вода, умягченная известкованием или известково-содовым методом, как правило, пересыщена карбона­том кальция и характеризуется очень высоким рН. Поэтому для увеличения точности дозировки реагентов необходимо в допол­нение к автоматическому регулированию пропорционально рас­ходу обрабатываемой воды корректировать дозу еще и по рН. Воз­можна также корректировка дозы в зависимости от электропро­водности обработанной воды, если содержание SO^, СГ и NO3 стабильно и невелико. При небольших колебаниях дозировки из­вести Mg2+ играет буферную роль: с увеличением дозировки из­вести повышается количество Mg2+, переводимого в осадок (ухуд­шая тем самым его свойства), при сохранении щелочности умяг­ченной воды примерно на постоянном уровне.

Контроль за процессом умягчения осуществляется по вели­чине рН, которая должна быть > 10 из-за необходимости уда­ления из воды Mg2+, или, что менее точно, по величине гид - ратной щелочности, рассчитываемой на основе титрования проб воды кислотой в присутствии индикаторов фенолфталеина и метилоранжа.

Необходимо отметить, что контроль процесса реагентного умягчения воды может осуществляться и по ее электропроводно­сти. При введении в воду извести и переходе бикарбонатов в кар­бонаты, выпадающие в осадок, электропроводность обрабатыва­емой воды изменяется. В соответствии с кривой кондуктометри - ческого титрования в момент полной нейтрализации солей карбонатной жесткости электропроводность достигает минималь­ного значения. При дальнейшем увеличении добавок реагента электропроводность повышается вследствие избытка реагента. Таким образом, оптимальная доза известкового молока, вводимого в умягчаемую воду, характеризуется минимальным значением электропроводности воды.

С повышением температуры воды ускоряются химические ре­акции и кристаллизация осадков СаС03 и Mg(OH)2. Колебания температуры ухудшают условия осаждения.

Коагуляция улучшает осаждение осадков СаС03 + Mg(OH)2. Из-за-высокого рН умягчаемой применяют только коагулян­ты вй основе железа и алюминат натрия. На 1 моль FeS04 необ­ходимо наличие в воде 4 мг 02.

Попадание в осветлитель воздуха приводит к взмучиванию и выносу осадка с умягчаемой водой. Пересыщение воды воздухом можно установить, определяя йодометрическим способом содер­жание кислорода в воде после воздухоотделителя и сравнивая по­лученные результаты с табличными для данных температур.

Термохимическое умягчение заключается в подогреве воды выше 100°С и применении извести и соды, реже - едкого натрия и соды. В результате термохимического умягчения кальциевая жесткость может быть снижена до 0,2 мг-экв/дм3, а магниевая - до 0,1 мг-экв/дм3. Термохимический метод часто сочетают с фосфатным доумягчением воды. В качестве фосфатных реагентов используют ди - или тринатрийфосфат. В результате фосфатного доумягчения можно получить воду с остаточной жесткостью 0,04-0,05 мг-экв/дм3.

Сульфатную жесткость устраняют карбонатом, гидроксидом или алюминатом бария.

Для обеспечения правильного проведения описанных выше процессов умягчения воды необходим соответствующий аналити­ческий контроль. Рекомендуемые анализы и частота их выполне­ния приведены в табл. 1.7.

Полезным руководством для обеспечения хорошего эффекта умягчения могут служить следующие правила: 1) гидратная ще­лочность должна превышать магнезиальную жесткость примерно на 0,4 мг-экв/дм3 при процессе без подогрева и на 0,2 мг-экв/дм3 при процессе с подогревом; 2) карбонатная щелочность должна превышать кальциевую жесткость примерно на 1,2 мг-экв/дм3 при процессе без подогрева и примерно на 0,8 мг-экв/дм3 при процессе с подогревом.

Так как некоторые малорастворимые соли при длительном хранении могут выпасть в осадок, a NaOH переходит в Na2C03, то не следует пользоваться данны­ми усредненных проб умягчаемой воды.

Также из-за наличия проскоков суспензии СаС03 и Mg(OH)2 в умягченную воду ее необходимо дополнительно профильтровать через дробленый антрацит. Кварцевый песок в этом случае явля­ется нежелательным материалом в связи с тем, что он может обо­гащать воду соединениями кремниевой кислоты.

Ионитовое умягчение. Оно осуществляется главным образом с применением Na+-, Н+- и NHj-форм.

В процессе умягчения воды Na-катионированием содержание кальция и магния в воде может быть снижено до весьма малых значений. Общая щелочность при этом не изменится, сухой ос­таток несколько возрастает в результате замещения в воде одного иона кальция, имеющего молекулярную массу 40,08, на два иона натрия (масса 2 х 22,99 = 45,98).

Вода

Показатели качества воды

Периодичность анализов

Обязательные

Дополнительные

Исходная

Свободная углекислота, общая жесткость, каль­ций, магний, общая ще­лочность

Сульфаты, сухой оста­ток, рН, кремний, хло­риды

Не реже 1 раза в неде­лю, а жесткость и ще­лочность - ежедневно

Умягченная

Известково-содовое умягчение

Общая жесткость, рН, щелочность общая и по фенолфталеину, взве­шенные вещества

Сульфаты, сухой оста­ток, кальций, магний, кремний. алюминий, хло­риды

Для аппаратов пери­одического действия - при каждой новой дозе реагентов; для аппара­тов непрерывного дейст­вия - ежедневно, хотя может потребоваться и более частое проведе­ние анализа, если ка­чество исходной воды существенно меняется

Фосфатное умягчение с подогревом Общаяжесткость, щелоч­ность по фенолфталеи­ну, избыток фосфатов

При фильтровании через катионит в Н-форме все катионы растворенных солей (в том числе и катионы солей жесткости) будут сорбироваться на его зернах; в воду будет переходить экви­валентное количество Н+-ионов; растворенные в воде соли будут превращаться в соответствующие кислоты. Кислотность воды, прошедшей через Н-катионитовый фильтр, который загружен сильноосновным катионитом, будет равна сумме концентраций в исходной воде солей сильных кислот.

Регенерация Н-катионитовых фильтров кислотой в количестве, недостаточном для полного вытеснения из катионита катионов жесткости («голодная» регенерация), позволяет в рабочем цикле снижать щелочность воды до 0,4-0,5 мг-экв/дм3, не снижая ее некарбонатную жесткость.

Если в умягченной воде не допускается наличия карбонатов натрия и калия, но в ней допустимо присутствие ионов аммония, то вместо H-Na-катионирования можно применять NH4-Na-Ka - тионирование.

Умягченная катионированием вода получается более коррози - онно-активной, чем исходная, из-за полного отсутствия в ней би­карбоната кальция, который при определенных условиях может образовывать защитный слой карбоната кальция на поверхности металла, находящегося в контакте с водой.

При контроле качества фильтрата катионитовых установок осо­бое внимание уделяется определению показателей, так или иначе связанных с понятием жесткости и щелочности воды: жесткости общей и карбонатной, щелочности карбонатной и гидратной, со­держанию солей кальция и магния, общему солесодержанию, ве­личине рН, содержанию анионов.

В процессе работы катионитов дополнительно необходимо пе­риодически проверять поглощение или вынос из них фильтратом органических веществ.

Под обессоливанием воды понимают процесс снижения раство­ренных в ней солей до требуемой величины. Различают частич­ное и полное обессоливание. Частным случаем обессоливания воды является опреснение, в результате которого величина соле - содержания в очищенной воде не превышает 1000 мг/дм3 - ПДК всех солей в питьевой воде.

К наиболее распространенным методам обессоливания воды относятся ионный обмен, электродиализ, обратный осмос и дис­тилляция.

Обессоливание позволяет почти полностью удалить из воды вещества, способные целиком или частично диссоциировать (на­пример, соли и кремниевую кислоту); неэлектролиты при этом могут остаться в воде. Иногда происходит также некоторое уменьшение цветности, связанное с абсорбцией кислых органи­ческих веществ ионитами и мембранами. Так как при обессоли - вании удаляются те вещества, которые проводят электрические вещества, показателем качества обработанной воды служит обыч­но ее электропроводность, выраженная в мкСм/см. Расчетное значение этого параметра при 18°С в «сверхчистой» воде состав­ляет 0,037 мкСм/см. Однако в производственных условиях пока удается получать «сверхчистую» воду с удельной электрической проводимостью 0,1 - 1,0 мкСм/см.

За основной критерий, оценивающий качество обработки воды и ионообменную способность фильтров, часто принимают элект­ропроводность воды, пороговая величина которой устанавливается по опытно-исследовательским данным. Например, электропро­водность воды после катионообменника должна быть менее 240, после слабоосновного анионообменника - 50-220 и после силь­ноосновного анионообменника < 20 мкСм/см. Превышение этих значений указывает на истощение ионообменных смол до конт­рольного уровня и на необходимость их регенерации.

Поскольку существующие нормы качества питьевой воды в большинстве своем регламентируют предельно допустимые концен­трации макро - и микрокомпонентов ее состава, то опресненные воды в основном отвечают действующим нормативным требовани­ям. Однако в связи со все расширяющимся вовлечением опреснен­ных вод в централизованные системы хозяйственно-питьевого во­доснабжения возникает необходимость дополнительного нормиро­вания минимально необходимых концентраций важнейших в гигиеническом отношении показателей качества: содержания каль­ция, бикарбонатов, общего солесодержания, натрия, калия и др. Как показывают современные медико-физиологические исследова­ния, недостаточное содержание в опресненной воды солей жест­кости (менее 1,5 мг-экв/дм3) может привести к нарушениям обме­на веществ и сердечно-сосудистым заболеваниям в организме лю­дей, длительное время употребляющих такую мягкую воду.

Известно, что важнейшей характеристикой пресной воды является ее жесткость. Под жесткостью понимают количество миллиграмм-эквивалентов ионов кальция или магния в 1 л воды. 1 мг÷экв/л жесткости соответствует содержанию 20,04 мг Са 2+ или 12,16 мг Mg 2+ . По степени жесткости питьевую воду делят на очень мягкую (0-1,5 мг÷экв/л), мягкую (1,5-3 мг÷экв/л), средней жесткости (3-6 мг÷экв/л), жесткую (6-9 мг÷экв/л) и очень жесткую (более 9 мг÷экв/л). Наилучшие вкусовые свойства имеет вода с жесткостью 1,6-3,0 мг÷экв/л, а, согласно СанПиН 2.1.4.1116-02, физиологически полноценная вода должна содержать солей жесткости на уровне 1,5-7 мг÷экв/л. Однако при жесткости воды выше 4,5 мг÷экв/л происходит интенсивное накопление осадка в системе водоснабжения и на сантехнике, нарушается работа бытовых приборов. Обычно умягчение проводят до остаточной жесткости 1,0-1,5 мг÷экв/л, что соответствует зарубежным нормативам по эксплуатации бытовой техники. Вода, имеющая жесткость ниже 0,5 мг÷экв/л является коррозионно-активной по отношению к трубам и котлам, способна вымывать отложения в трубах, накапливающиеся при долгом застаивании воды в системе водоснабжения. Это влечет за собой появление неприятных запаха и вкуса воды.

Умягчение воды осуществляют методами:
- термическим, основанным на нагревании воды, ее дистилляции или вымораживании;
- реагентными, при которых находящиеся в воде ионы Са (II) и Mg (II) связывают различными реагентами в практически нерастворимые соединения;
- ионного обмена, основанного на фильтровании умягчаемой воды через специальные материалы, обменивающие входящие в их состав ионы Na (I) или Н (I) на ионы Са (II) и Mg (II), содержащиеся в воде;
- диализа; комбинированным, представляющим собой различные сочетания перечисленных методов.

Выбор метода умягчения определяется качеством воды, необходимой глубиной умягчения и технико-экономическими соображениями.

Умягчение воды катионированием основано на явлении ионного обмена, сущность которого состоит в способности ионообменных материалов или ионитов поглощать из воды положительные ионы в обмен на эквивалентное количество ионов катионита. Каждый катионит обладает определенной обменной емкостью, выражающейся количеством катионов, которые катионит может обменять в течение фильтроцикла. Обменную емкость катионита измеряют в грамм-эквивалентах задержанных катионов на 1 м 3 катионита, находящегося в набухшем (рабочем) состоянии после пребывания в воде, т.е. в таком состоянии, в котором катионит находится в фильтрате. Различают полную и рабочую обменную емкость катионита. Полной обменной емкостью называют то количество катионов кальция и магния, которое может задержать 1 м 3 катионита, находящегося в рабочем состоянии, до того момента, когда жесткость фильтрата сравнивается с жесткостью исходной воды. Рабочей обменной емкостью катионита называют то количество катионов Са +2 и Мg +2 , которое задерживает 1 м 3 катионита до момента «проскока» в фильтрат катионов солей жесткости. Обменную емкость, отнесенную ко всему объему катионита, загруженного в фильтр, называют емкостью поглощения.

При пропуске воды сверху вниз через слой катионита происходит ее умягчение, заканчивающееся на некоторой глубине. Слой катионита, умягчающий воду, называют работающим слоем или зоной умягчения. При дальнейшем фильтровании воды верхние слои катионита истощаются и теряют обменную способность. В ионный обмен вступают нижние слои катионита и зона умягчения постепенно опускается. Через некоторое время наблюдаются три зоны: работающего, истощенного и свежего катионита. Жесткость фильтрата будет постоянной до момента совмещения нижней границы зоны умягчения с нижним слоем катионита. В момент совмещения начинается «проскок» катионов Са +2 и Мg +2 и увеличение остаточной жесткости, пока она не станет равной жесткости исходной воды, что свидетельствует о полном истощении катионита. Рабочую обменную емкость фильтра Ер г÷экв/ м 3 , можно выразить так: Ер = QЖи; Ер = ер Vк.

Объем загруженного в фильтр катионита в набухшем состоянии Vк = аhк.
Формула для определения рабочей обменной емкости катионита, г÷экв/ м 3: ер = QЖи /аhк; где Жи — жесткость исходной воды, г÷экв/ м 3 ; Q — количество умягченной воды, м 3 ; а — площадь катионитового фильтра, м 2 ; hк — высота слоя катионита, м.

Обозначив скорость фильтрования воды в катионитовом фильтре vк, количество умягченной воды можно найти по формуле: Q = vк aTk = ераhк /Жи; откуда длительность работы катионитового фильтра (межрегенерационный период) находим по формуле: Tk = ерhк /vк Жи.

По исчерпании рабочей обменной способности катионита его подвергают регенерации, т.е. восстановлению обменной емкости истощенного ионообменника путем пропуска раствора поваренной соли.

В технологии умягчения воды широко применяют ионообменные смолы, которые представляют собой специально синтезированные полимерные нерастворимые в воде вещества, содержащие в своей структуре ионогенные группы кислотного характера NaSO 3 - (сильнокислотные катиониты). Ионообменные смолы подразделяют на гетеропористые, макропористые и изопористые. Гетеропористые смолы на дивинилбензоловой основе характеризуются гетерогенным характером гелевидной структуры и небольшими размерами пор. Макропористые имеют губчатую структуру и поры свыше молекулярного размера. Изопористые имеют однородную структуру и полностью состоят из смолы, поэтому их обменная способность выше, чем у предыдущих смол.

Качество катионитов характеризуется их физическими свойствами, химической и термической стойкостью, рабочей обменной емкостью и др. Физические свойства катионитов зависят от их фракционного состава, механической прочности и насыпной плотности (набухаемости). Фракционный (или зерновой) состав характеризует эксплуатационные свойства катионитов. Он определяется ситовым анализом. При этом учитываются средний размер зерен, степень однородности и количество пылевидных частиц, непригодных к использованию.

Мелкозернистый катионит, обладая более развитой поверхностью, имеет несколько большую обменную емкость, чем крупно-зернистый. Однако с уменьшением зерен катионита гидравлическое сопротивление и расход электроэнергии на фильтрование воды увеличиваются. Оптимальные размеры зерен катионита, исходя из этих соображений, принимают в пределах 0,3...1,5 мм. Рекомендуется применять катиониты с коэффициентом неоднородности Кн = 2.

Приведем характеристики некоторых катионоообменников. Среди сильнокислотных катионообменников отечественного производства, разрешенных к применению для хозяйственно-питьевого водоснабжения, можно выделить КУ-2-8чС. Получают его сульфированием гранульного сополимера стирола с 8% дивинилбензола. КУ-2-8чС по структуре и свойствам близок к следующим зарубежным сульфокатионитам особой степени чистоты: амберлайту IRN-77 (США), зеролиту 325 NG (Англия), дауэксу HCR-S-Н (США), дуолайту ARC-351 (Франция), вофатиту RH (Германия). По внешнему виду — сферические зерна от желтого до коричневого цвета, размером 0,4-1,25 мм, удельный объем не более 2,7 см 3 /г. Полная статическая обменная емкость не менее 1,8 г÷экв/л, мин, динамическая обменная емкость с полной регенерацией не менее 1,6 г÷экв/л.

В настоящее время нашли широкое применение сильнокислотные катиониты фирмы Пьюролайт: C100, С100Е, С120Е (аналоги отечественных смол КУ-2-8, КУ-2-8чС). Применяется ионообменная смола фирмы Пьюролайт С100Е Аg (обменная емкость 1,9 г÷экв/л, насыпная масса 800-840 г/л), представляющая собой серебросодержащий катионит для водоумягчения, обладающий бактерицидным действием. Существует отечественный аналог КУ-23С — макропористый катионит бактерицидного действия (статическая обменная емкость 1,25 г÷экв/л, насыпная масса 830-930 г/л).

Применяется для умягчения питьевой воды как в промышленности, так и в быту катионит Пьюрофайн С100ЕF — он имеет ряд преимуществ по сравнению с общепринятыми смолами для водоумягчения. Обладает намного большей рабочей емкостью при обычных скоростях потока, повышенной рабочей емкостью при высоких скоростях потока, при меняющемся и прерывающемся потоке. Минимальная общая обменная емкость 2,0 г÷экв/л. Особенность катионита С100ЕF состоит в том, что он требует меньшего объема и количества регенеранта (NaCl).

Применяется сильнокислотный катионит IONAС/С 249 для умягчения воды бытового и муниципального применения. Обменная емкость 1,9 г÷экв/л.

Умягчение воды натрий-катионитовым методом на указанных смолах: жесткость воды снижается при одноступенчатом натрий-катионировании до 0,05...0,1, при двухступенчатом — до 0,01 мг÷экв/л.

После истощения рабочей обменной емкости катионита он теряет способность умягчать воду и его необходимо регенерировать. Процесс умягчения воды на катионитовых фильтрах слагается из следующих последовательных операций: фильтрование воды через слой катионита до момента достижения предельно допускаемой жесткости в фильтрате (скорость фильтрования в пределах 10...25 м/ч); взрыхление слоя катионита восходящим потоком умягченной воды, отработанного регенерата или отмывных вод (интенсивность потока 3...4 л/(см 2); спуска водяной подушки во избежание разбавления регенерирующего раствора; регенерации катионита посредством фильтрования соответствующего раствора (скорость фильтрования 8...10 м/ч). На регенерацию обычно затрачивают около 2ч, из них на взрыхление — 10...15, на фильтрование регенерирующего раствора — 25...40, на отмывку — 30...60 мин.

Процесс регенерации на практике ограничиваются однократным пропуском соли при жесткости умягченной воды до 0,20 мг÷экв/л или двукратным — при жесткости ниже 0,05 мг÷экв/л.



Новое на сайте

>

Самое популярное