Домой Ландшафтный дизайн Микробиологические методы исследования воды, почвы, воздуха. Методы отбора проб воздуха Методы забора проб материала

Микробиологические методы исследования воды, почвы, воздуха. Методы отбора проб воздуха Методы забора проб материала

Седиментационный - наиболее старый метод, широко распространен благодаря простоте и доступности, однако является неточным. Метод предложен Р. Кохом и заключается в способности микроорганизмов под действием силы тяжести и под влиянием движения воздуха (вместе с частицами пыли и капельками аэрозоля) оседать на поверхность питательной среды в открытые чашки Петри. Чашки устанавливаются в точках отбора на горизонтальной поверхности. При определении общей микробной обсемененности чашки с мясопептонным агаром оставляют открытыми на 5-10 мин или дольше в зависимости от степени предполагаемого бактериального загрязнения. Для выявления санитарно-показательных микробов применяют среду Гарро или Туржецкого (для обнаружения стрептококков), молочно-солевой или желточно-солевой агар (для определения стафилококков), суслоагар или среду Сабуро (для выявления дрожжей и грибов). При определении санитарно- показательных микроорганизмов чашки оставляют открытыми в течение 40-60 мин.

По окончании экспозиции все чашки закрывают, помещают в термостат на сутки для культивирования при температуре, оптимальной для развития выделяемого микроорганизма, затем (если этого требуют исследования) на 48 ч оставляют при комнатной температуре для образования пигмента пигментообразующими микроорганизмами.

Седиментационный метод имеет ряд недостатков: на поверхность среды оседают только грубодисперсные фракции аэрозоля; нередко колонии образуются не из единичной клетки, а из скопления микробов; на применяемых питательных средах вырастает только часть воздушной микрофлоры. К тому же этот метод совершенно непригоден при исследовании бактериальной загрязненности атмосферного воздуха.

Более совершенными методами являютсяаспирационные , основанные на принудительном осаждении микроорганизмов из воздуха на поверхность плотной питательной среды или в улавливающую жидкость (мясо-пептонный бульон, буферный раствор, изотонический раствор хлорида натрия и др.). В практике санитарной службы при аспирационном взятии проб используются аппарат Кротова, бактериоуловитель Речменского, прибор для отбора проб воздуха (ПОВ-1), пробоотборник аэрозольный бактериологический (ПАБ-1),бактериально-вирусный электропреципитатор (БВЭП-1), прибор Киктенко, приборы Андерсена, Дьяконова, МБ и др. Для исследования атмосферы могут быть использованы и мембранные фильтры № 4, через которые воздух просасывается с помощью аппарата Зейтца. Большое разнообразие приборов свидетельствует об отсутствии универсального аппарата и о большей или меньшей степени их несовершенства.

Прибор Кротова. В настоящее время этот прибор широко применяется при исследовании воздуха закрытых помещений и имеется в лабораториях


Принцип работы аппарата Кротова (рис. 22) основан на том, что воздух, просасываемый через клиновидную щель в крышке аппарата, ударяется о поверхность питательной среды, при этом частицы пыли и аэрозоля прилипают к среде, а вместе с ними и микроорганизмы, находящиеся в воздухе. Чашку Петри с тонким слоем среды укрепляют на вращающемся столике аппарата, что обеспечивает равномерное распределение бактерий на ее поверхности. Работает аппарат от электросети. После отбора пробы с определенной экспозицией чашку вынимают, закрывают крышкой и помещают на 48 ч в термостат. Обычно отбор проб проводят со скоростью 20-25 л/мин в течение 5 мин. Таким образом, определяется флора в 100-125 л воздуха. При обнаружении санитарно-показательных микроорганизмов объем исследуемого воздуха увеличивают до 250 л.

Приемник перед забором пробы воздуха заполняется 3-5 мл улавливающей жидкости (водой, мясопептонным бульоном, изотоническим раствором хлорида натрия).

Прибор Речменского работает по принципу пульверизатора: при прохождении воздуха через узкое отверстие воронки жидкость из приемника через капилляр в виде капелек поднимается в цилиндр. Капли жидкости еще больше дробятся, ударяясь о стеклянную лопаточку и стенки сосуда, создавая облачко из мелких капелек, на которых и адсорбируются находящиеся в воздухе микроорганизмы. Насыщенные бактериями капли жидкости стекают в приемник, а затем опять диспергируются, что обеспечивает максимальное улавливание бактерий из воздуха. При работе прибор помещают под углом 15-25°, что обеспечивает стекание улавливающей жидкости в приемник. Скорость отбора проб воздуха через аппарат Речменского - 10-20 л/мин. По окончании работы жидкость из приемника забирают стерильной пипеткой и засевают (по 0,2 мл) на поверхность плотных питательных сред. Преимуществом бактериоуловителя Речменского является высокая эффективность улавливания бактериальных аэрозолей. Недостатки прибора заключаются в трудности его изготовления, нестандартности получаемых аппаратов, их большой хрупкости и сравнительно низкой производительности.

Большим преимуществом являются серийный выпуск этого прибора (что дало возможность оснастить им лаборатории), его портативность, более высокая производительность (20-25 л/мин). Колба прибора, в которую помещается улавливающая жидкость, изготовляется из термостойкого плексигласа, капилляр из нержавеющей стали. В колбу вмонтирован пульверизатор, вызывающий диспергирование улавливающей жидкости при просасывании воздуха. Такое устройство дает возможность легко очищать и стерилизовать колбу с диспергирующим устройством простым кипячением в течение 30 мин (автоклавирование недопустимо, так как оно вызывает деформацию цилиндра).

Перед забором проб воздуха в колбу вносят 5-10 мл улавливающей жидкости (чаще всего мясопептонный бульон) и устанавливают ее под углом 10°, что обеспечивает естественное стекание жидкости после диспергирования. Воздух, проходя через колбу и пульверизатор, вызывает образование мелких капелек улавливающей жидкости, на которых оседают микроорганизмы. Прибор ПОВ-1 применяется для исследования воздуха закрытых помещений на общую микробную обсемененность, для обнаружения патогенных бактерий (например, микобактерий туберкулеза) и респираторных вирусов в воздухе больничных палат.

Пробоотборник «Тайфун» Р-40 (М) бактериологический предназначен для определения общего бактериального обсеменения воздуха с последующим выделением различных патогенных и санитарно-показательных микроорганизмов.

Посев микроорганизмов из окружающего воздуха осуществляется через калиброванное отверстие в смотровом отсеке на чашку Петри с питательной средой, закрепленную на вращающемся столике прибора. Прокачка воздуха осуществляется с помощью встроенного в пробоотборник «Тайфун» Р-40 (М) бактериологический роторного пневмонасоса, крепление на вращающемся столике универсальное, что позволяет использовать чашки Петри различных модификаций.

В бактериологическом пробоотборнике «Тайфун» Р- 40 (М) обеспечена герметичность внутренней камеры и легкий доступ к исследуемой среде.

Скорость вращения чашки плавно устанавливается при помощи регулятора скорости, расположенного на передней панели пробоотборника (рис.23) «Тайфун» Р-40 (М).

Пробоотборник аэрозольный бактериологический (ПАБ-1). Механизм действия ПАБ-1 основан на принципе электростатического осаждения частиц аэрозоля (а следовательно, и микроорганизмов) из воздуха при прохождении его через прибор, в котором эти частицы получают электрический заряд и осаждаются на электродах с противоположным знаком. На электродах для улавливания аэрозолей помещают в горизонтальном положении металлические поддоны с твердыми средами в чашках Петри или жидкой питательной средой (15-20 мл). Прибор переносной с большой производительностью 150-250 л/мин, т.е. за 1 ч можно отобрать 5-6 м3 воздуха. Его рекомендуют применять для исследования больших объемов воздуха при обнаружении условно-патогенных и патогенных микроорганизмов, например, при выявлении в воздухе палат больниц возбудителей внутрибольничных инфекций (Pseudomonas aeruginosa. Staph, aureus и др.), определении сальмонелл и эшерихий в атмосферном воздухе в местах дождевания при орошении земледельческих полей сточными водами.

Бактериально-вирусный электропреципитатор (БВЭП-1). Прибор основан на аспирационно-ионизационном принципе действия. БВЭП-1 состоит из осадительной камеры, в которую вмонтированы электроды: отрицательный в виде приводящей трубки, через которую поступает воздух (и частички аэрозоля соответственно заряжаются отрицательно), и положительный, на котором оседают бактерии.

Прибор МБ. Этот прибор служит не только для определения общей микробной обсемененности, но и для отбора проб воздуха с аэрозольными частицами различных размеров. Прибор МБ построен по принципу «сита» и представляет собой цилиндр, разделенный на 6 горизонтальных полос, на каждую из которых помещают чашки Петри с МПА. Воздух просасывается, начиная с верхней ступени, в пластине которой отверстия самые крупные, и чем ниже ступень, тем меньше размером отверстия (через последние проходят только тонкодисперсные фракции воздушного аэрозоля). Прибор рассчитан на улавливание частиц аэрозоля размером более 1 мкм при скорости отбора воздуха 30 л/мин. Уменьшение числа отверстий обеспечивает более равномерное распределение по питательной среде аэрозоля из воздуха. Для улавливания еще более мелких частиц аэрозоля можно добавлять дополнительно фильтр из фильтрующего материала АФА.

При использовании любого из перечисленных приборов получаемые результаты являются приблизительными, однако они дают более правильную оценку обсемененности воздуха в сравнении с седиментационным методом. Поскольку и отбор и санитарно-микробиологические исследования воздуха не регламентированы ГОСТ, то можно использовать любой прибор для оценки бактериальной загрязненности воздуха. Во многих случаях отбор проб совмещен с этапом посева.

Для снижения численности микроорганизмов в воздухе закрытых помещений применяют следующие средства: а) химические - обработка озоном, двуокисью азота, распыление молочной кислоты, б) механические - пропускание воздуха через специальные фильтры, в) физические - ультрафиолетовое облучение.

Существуют два основных способа отбора проб воздуха для исследования: 1) седиментационный - основан на механическом оседании микроорганизмов; 2) аспирационный - основан на активном просасывании воздуха (этот метод дает возможность определить не только качественное, но и количественное содержание бактерий).

Седиментационный метод

Чашки Петри с питательной средой (МПА) устанавливают в открытом виде горизонтально, на разном уровне от пола. Метод основан на механическом оседании бактерий на поверхность агара в чашках Петри. Чашки со средой экспонируют от 10 до 20 мин, в зависимости от предполагаемого загрязнения воздуха. Для выявления патогенной флоры используют элективные среды. Экспозиция в этих случаях удлиняется до 2-3 ч. После экспозиции чашки закрывают, доставляют в лабораторию и ставят в термостат на 24 ч при температуре 37° С. На следующий день изучают выросшие колонии. Метод этот используют в основном в закрытых помещениях.

(Аспирационный метод )

Бактериоуловитель Речменского. Перед работой прибор заполняют стерильной содой. Действие прибора основано на протягивании через него воздуха с помощью аспиратора. При этом происходит распыление находящейся в приборе жидкости. После окончания просасывания жидкость, через которую был пропущен воздух, засевают по 0,1-0,2 мл на МПА в чашках Петри. При необходимости использовать элективные среды посевную дозу увеличивают (0,3-0,5 мл). Полученная в приемнике жидкость может быть использована для заражения животных (например, при исследованиях, проводимых для выявления вирусов, риккетсий и т. д.).

Прибор Дьяконова также основан на улавливании бактерий в жидкости, через которую пропущен воздух.

Прибор ПАБ-1 предназначен для бактериологического исследования больших объемов воздуха в течение короткого промежутка времени. Получение проб воздуха производят со скоростью 125-150 л/мин. Принцип работы прибора основан на улавливании микроорганизмов на электрод противоположного заряда. Большая скорость отбора проб воздуха в этом приборе и возможность посева его на различные питательные среды имеет значение для обнаружения патогенных и условно-патогенных бактерий (например, синегнойной палочки в хирургических отделениях и др.).

Аппарат Кротова. Действие основано на принципе удара струи воздуха на среду в чашках Петри. Аппарат состоит из трех частей: узла для отбора проб воздуха, ротаметра, электрической части питающего механизма.

Исследуемый воздух при помощи центробежного вентилятора, вращающегося со скоростью 4000-5000 об/мин, засасывается в щель прибора и ударяется о поверхность открытой чашки Петри со средой. Содержащиеся в воздухе микроорганизмы оседают на питательный агар. Для равномерного распределения микроорганизмов по всей поверхности столик с находящейся на нем чашкой вращается. Из прибора воздух выводится через воздухопроводную трубку, которая соединена с ротаметром, показывающим скорость протягивания воздуха через прибор.

Недостатком прибора Кротова является то, что он нуждается в электроэнергии, поэтому не во всех условиях может быть использован.

Первый день исследования

Отобранные пробы помещают в термостат при 37° С на 18-24 ч.

Второй день исследования

Чашку вынимают из термостата и производят подсчет колоний. Бактериальное загрязнение воздуха выражается общим числом микробов в 1 м 3 его.

Расчет. Например, за 10 мин пропущено 125 л воздуха, на поверхности выросло 100 колоний.

Для определения золотистого стафилококка забор производят на желточно-солевой агар. Чашки с посевами инкубируют в термостате при 37° С в течение 24 ч и 24 ч выдерживают при комнатной температуре для выявления пигмента. Колонии, подозрительные на S. aureus, подлежат дальнейшей идентификации (см. главу 14).

В детских учреждениях воздух проверяют на наличие сальмонелл. Для этого воздух засевают в чашку со средой висмут-сульфитный агар.

Выявление патогенных бактерий и вирусов в воздухе закрытых помещений проводят по эпидемиологическим показаниям. Для выявления возбудителей туберкулеза пользуются прибором ПОВ, в качестве улавливающей используется среда Школьниковой.

Смолина Света

ВВЕДЕНИЕ

Воздух является средой, содержащей значительное количество микроорганизмов. С воздухом они могут переноситься на значительные расстояния. В отличие от воды и почвы, где микробы могут жить и размножаться, в воздухе они только сохраняются некоторое время, а затем гибнут под влиянием ряда неблагоприятных факторов: высыхания, действия солнечной радиации, смены температуры, отсутствия питательных веществ и др. Наиболее устойчивые микроорганизмы могут долго сохраняться в воздухе и обнаруживаться там с большим постоянством. К такой постоянной микрофлоре воздуха относятся споры грибов и бактерий.

Количество микроорганизмов в воздухе колеблется в значительных пределах и зависит от условий, расстояния от поверхности земли, от близости населенных пунктов и т. д. Наибольшее количество микробов содержит воздух промышленных городов, наименьшее – воздух лесов, гор . Много бактерий находится в воздухе помещений, где неизбежно массовое хождение людей (кинотеатры, театры, школы, вокзалы и т. д.), сопровождающееся поднятием в воздух пыли .

Всем известно, что здоровье человека зависит от качества окружающей среды: воды, воздуха и других факторов. Школа – это такое место, где постоянно находится много людей. На своей одежде, обуви, внутри своего организма они приносят в школу много разных микробов, бактерий и других микроорганизмов.

Цель: на основе исследований определить степень загрязнения воздуха закрытых школьных помещений.

  1. определить количество микроорганизмов, содержащихся в воздухе различных помещений;
  2. изучить динамику содержания микроорганизмов в воздухе в течение учебного дня.

МЕТОДЫ ИССЛЕДОВАНИЯ

Наиболее старым методом микробиологического анализа воздуха является седиментационный метод (метод оседания Коха). Его используют только при исследовании воздуха закрытых помещений. Для этого чашки Петри с питательной средой при исследовании общей бактериальной загрязненности воздуха оставляют открытыми в местах отбора проб в течение 5-10 минут. По окончании экспозиции чашки закрывают и помещают в термостат при 37 0 С на 24 ч, а затем при комнатной температуре выдерживают еще сутки. О степени загрязненности воздуха судят по количеству выросших колоний. Данный метод пригоден для сравнительных оценок чистоты воздуха .

Учет посева бактерий из воздуха производят путем подсчета выросших колоний бактерий отдельно. Зная площадь чашки Петри, можно определить количество микроорганизмов в 1м 3 воздуха. Для этого: 1) определяется площадь питательной среды в чашке Петри по формуле рr 2 ; 2) вычисляют количество колоний на площади 1 дм 2 ; 3 воздуха .

Примерный расчет. В чашке Петри диаметром в10 см выросло 25 колоний.

  1. определяют площадь питательной среды в чашке Петри по формуле 3,14*5 2 или 3,14*25 = 78,5 см 2

2) вычисляют количество колоний на площади 1 дм , равного 100 см 2

25колоний – 78,5 см 2

х колоний – 100 мм 2

х=25*100/78,5=32 колоний

т. е. на площади 1 дм 2 имеется 32 колонии.

3) пересчитывают количество бактерий на 1м 3 воздуха, который равен 1000л. Содержащиеся 32 колоний бактерий на площади 1 дм 2 соответствуют объему 10л воздуха. Чтобы узнать количество в1м 3 воздуха, составляют пропорцию:

х=32*1000/10=3200

Следовательно, в1м 3 воздуха содержится 3200 бактериальных телец.

Таблица 1. Критерии для оценки загрязненности помещений по числу микроорганизмов в 1м 3 воздуха

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

В ходе исследований для каждой микробиологической оценки использовалось по три чашки Петри. На основании подсчета колоний, выросших в чашках Петри, была проведена оценка содержания микроорганизмов, которые содержатся в воздухе различных помещений в разные периоды учебного дня.

На первом этапе исследования было проведено сравнение данных, полученных в разных помещениях в один период времени. Наименьшее количество микроорганизмов (1571) было выявлено в классном помещении, а наибольшее (16220) – в спортзале. По-видимому это объясняется тем, что занятие физкультурой, подвижные игры приводят к поднятию пыли, следовательно и микроорганизмов, находящихся в ней.

Таблица 3. Количество микроорганизмов, содержащееся в 1м 3 воздуха школьных помещений

На втором этапе исследований был проведен сравнительный анализ загрязнения воздуха в одном и том же помещении, но в разные периоды учебного дня. Объектом для данного исследования был выбран коридор.

Таблица 4. Количество микроорганизмов, содержащееся в 1м 3 воздуха школьного коридора в разные периоды времени

1-ая чашка

2-ая чашка

До 1 урока

1 перемена

5 перемена

На третьем этапе был также проведен анализ изменения содержания микроорганизмов в воздухе в одном помещении (класс химии), но при наличии двух дополнительных факторов: 1) проветриваемость помещения, 2) количество людей и интенсивность их передвижения.

В классе в течение всего дня были открыты форточки, что способствовало проветриванию помещения. Однако наблюдается резкое увеличение количества микроорганизмов во время 1 перемены, когда происходила смена различных классов. Таким образом, резкий скачок количества микроорганизмов, по-видимому, объясняется увеличением количества людей в помещении. При этом, проветриваемость помещения не оказывает существенного влияния на содержание микроорганизмов в воздухе в это время.

Однако на 5 перемене люди в классной комнате отсутствовали и это привело к снижению численности микроорганизмов в воздухе. Все это говорит о первостепенном влиянии именно такого фактора, как количество людей и интенсивность передвижения на степень загрязненеия воздуха микроорганизмами. Проветриваемость же помещений возможно оказывает свое влияние на общее количество микроорганизмов, но не на динамику их содержания.

Таблица 5. Количество микроорганизмов, содержащееся в 1м 3 воздуха классного помещения в разные периоды времени

На четвертом этапе был проведен сравнительный анализ классного кабинета и коридора в течение всего учебного дня.

Таблица 6. Количество микроорганизмов, содержащееся в 1м 3 воздуха классного помещения

1-ая чашка

2-ая чашка

1 перемена

2 перемена

3 перемена

4 перемена

5 перемена

После уроков

Таблица 7. Количество микроорганизмов, содержащееся в 1м 3 воздуха коридора

ЗАКЛЮЧЕНИЕ

  1. Наибольшее количество микроорганизмов выявлено в воздухе спортзала, а наименьшее – классной комнаты.
  2. Наблюдается тенденция увеличения количества микроорганизмов в воздухе коридора в течение учебного дня.
  3. В воздухе классного помещения содержание микроорганизмов увеличивается во время перемен и уменьшается во время уроков.
  4. Количество микроорганизмов в воздухе в первую очередь зависит от численности людей в помещении и интенсивности их передвижения.

СПИСОК ЛИТЕРАТУРЫ

1 Федоров М.В. Микробиология. – М.: Гос. Изд-во сельхозлитературы,1960.– 350 с.

2 Бакулина Н.А., Краева Э.Л. Микробиология.– М.: Медицина, 1980.– 338 с.

3 Павлович С.А., Пяткин К.Д. Медицинская микробиология. – Минск: Высшая школа, 1993. – 200 с.

4 Лабинская А.С. Микробиология с техникой микробиологических методов исследования.– М.: Медицина, 1968.– 392 с.

5 Черемисинов Н.А., Боева Л.И., Семихатова О.А. Практикум по микробиологии.– М.: Высшая школа, 1967.– 168 с.

6 Шлегель Г.Х. Общая микробиология.– М.: Мир, 1987.– 566 с.

Развитие исследований в области аэробиологии показало, что в воздухе закрытых помещений наряду с большим количеством сапрофитных микроорганизмов могут находиться патогенные бактерии и вирусы; менингококки, патогенные стафилококки, возбудители дифтерии, туберкулеза, коклюша, вирусы гриппа, оспы, аденовирусы и др. Санитарно-бактериологические исследования воздуха проводят в плановом порядке в яслях и детских садах, больницах, операционных, аптеках, школах, кинотеатрах. Исследуют также атмосферный воздух.

При санитарно-бактериологическом исследовании воздуха проводят:

1) определение общей бактериальной обсемененности воздуха (общее число бактерий в 1 м 3);

2) выявление саиитарно-показательных микроорганизмов;

3) по эпидемическим показаниям выделение вирусов и патогенных бактерий из воздуха закрытых помещений;

4) при исследовании атмосферного воздуха дополнительное определение качественного состава микрофлоры с учетом наличия спорообразующих аэробов и анаэробов, которые служат показателем загрязненности воздуха микроорганизмами почвы.

Методы отбора проб воздуха для бактериологического исследования подразделяют на:

1) аспирационные, основанные на активном просасывании воздуха с помощью различных приборов;

2) седиментационные, основанные на принципе механического оседания микробов.

Пробы воздуха берут на уровне сидящего или стоящего человека, выделяя одну точку взятия проб на каждые 20 м 2 площади.

Аспирационные методы используют при исследовании воздуха как закрытых помещений, так и атмосферного. Наиболее широкое применение в последние годы получил аппарат Кротова (рис. 44), который позволяет пропускать от 25 до 50 л воздуха в минуту. В аппарате Кротова воздух засасывается сквозь узкую щель крышки прибора и ударяется о поверхность плотной питательной среды в чашке Петри, которая медленно вращается на подвижном столике. Поверхность питательной среды равномерно обсеменяется микроорганизмами.

Существуют также другие приборы: ПОВ-1, бактериоуловител Речменского, Дьяконова, в которых воздух просасывается с помощью насосов, воздуходувок, аспираторов через материал, задерживающий бактериальный аэрозоль. В качестве такого материала используют стерильную воду, питательные среды, стерильный ватный тампон, пенистые или порошковые фильтры из растворимых материалов. Объем просасываемого воздуха измеряют с помощью газовых часов. После взятия пробы 1 мл жидкости засевают в чашку с мясо-пептонным агаром для определения общего числа бактерий. Через 24 ч инкубации в термостате при 37°С подсчитывают число колоний и делают пересчет на 1 м 3 воздуха. С целью определения санитарно-показательных микроорганизмов и патогенных микробов делают посевы на различные элективные среды.

Седиментационный метод наиболее старый (метод оседания Коха). Его используют только при исследовании воздуха закрытых помещений. Для этого чашки Петри с питательными средами при исследовании общей бактериальной загрязненности воздуха оставляют открытыми в местах отбора проб в течение 5—10 мин. По окончании экспозиции чашки зарывают и помещаю в термостат при 37°С на 24 ч, а затем при комнатной температуре выдерживает еще сутки. О степени загрязненности воздуха судят по количеству выросших колоний. Несмотря на неточность, данный метод пригоден для сравнительных оценок чистоты воздуха.

В настоящее время бактериологическое исследование воздуха проводится в основном в больницах согласно «Инструкции по бактериологическому контролю комплекса санитарно-гигиенических мероприятий в лебечно-профилактических учреждениях: отделениях хирургического профиля, в палатах и отделениях реанимации и интенсивной терапии» (Приложение к приказу № 720 от 31.07.1978 г. МЗ СССР). Определяют общую бактериальную обсемененность и наличие Staph, aureus.

Для установления общей бактериальной обсемененности воздуха закрытых помещений, согласно инструкции, отбирают две пробы воздуха с помощью аппарата Кротова по 100 л каждая.

С целью исследования воздуха на наличие стафилококка берут пробы воздуха на две чашки с желточно-солевым агаром или молочно-желточно-солевым агаром, пропуская 250 л воздуха.

Санитарно-бактериологическое исследование воздуха имеет большое значение в хирургических отделениях больниц, родильных домах, где имеется опасность возникновения внутрибольничной инфекции. Обнаружение Staph, aureus в этих отделениях является недопустимым. Нарастание количества Staph, aureus определенных фаготипов следует рассматривать как грозный предвестник возможного появления госпитальной инфекции.

Выявление вирусов и патогенных бактерий из воздуха закрытых помещений проводят по эпидемиологическим показаниям при оценке эффективности обеззараживания воздуха, при контроле санитарно-микробиологического содержания больничных учреждений и т. д.

Для выявления микобактерий туберкулеза отбор проб производят при помощи прибора ПОВ-І, в котором в качестве улавливающей используют среду Школьниковой. Исследуют 250—500 л воздуха (см. Микробиологическая диагностика туберкулеза).

Эталоном чистоты атмосферного воздуха считают показатель бактериальной обсемененности в зеленой зоне (зеленая зона ВДНХ—350 микробов в 1 м 3). Пример значительного обсеменения воздуха — места скопления людей и транспорта. Воздух операционных до начала операции должен содержать не более 500, а после нее — не более 1000 микробов в 1 м 3 . Staph, aureus не должны обнаруживаться при исследовании 250 л воздуха. В предоперационных и перевязочных до начала работы количество микробов в 1 м 3 не должно превышать 750. В больничных палатах летом число микробов должно быть менее 3500, а зимой — менее 5000 в 1 м 3 . Здесь допускают наличие стафилококков в воздухе: летом — 24, зимой — 52 при исследовании 250 л воздуха.


Санитарно-микробиологическое исследование воздуха можно разделить на 4 этапа:

1) отбор проб;
2) обработка, транспортировка, хранение проб, получение концентрата микроорганизмов (если необходимо);
3) бактериологический посев, культивирование микроорганизмов;
4) идентификация выделенной культуры.

Отбор проб, как и при исследовании любого объекта, является наиболее ответственным. Правильное взятие проб гарантирует точность исследования. В закрытых помещениях точки отбора проб устанавливаются из расчета на каждые 20 м 2 площади - одна проба воздуха, по типу конверта: 4 точки по углам комнаты (на расстоянии 0,5 м от стен) и 5-я точка - в центре. Пробы воздуха забираются на высоте 1,6-1,8 м от пола - на уровне дыхания в жилых помещениях. Пробы необходимо отбирать днем (в период активной деятельности человека), после влажной уборки и проветривания помещения. Атмосферный воздух исследуют в жилой зоне на уровне 0,5-2 м от земли вблизи источников загрязнения, а также в зеленых зонах (парки, сады и т.д.) для оценки их влияния на микрофлору воздуха.

Следует обратить внимание на то, что при отборе проб воздуха во многих случаях происходит посев его на питательную среду.

Все методы отбора проб воздуха можно разделить на седиментационные и аспирационные.

Седиментационный - наиболее старый метод, широко распространен благодаря простоте и доступности, однако является неточным. Метод предложен Р. Кохом и заключается в способности микроорганизмов под действием силы тяжести и под влиянием движения воздуха (вместе с частицами пыли и капельками аэрозоля) оседать на поверхность питательной среды в открытые чашки Петри. Чашки устанавливаются в точках отбора на горизонтальной поверхности. При определении общей микробной обсемененности чашки с мясопептонным агаром оставляют открытыми на 5-10 мин или дольше в зависимости от степени предполагаемого бактериального загрязнения. Для выявления санитарно-показательных микробов применяют среду Гарро или Туржецкого (для обнаружения стрептококков), молочно-солевой или желточно-солевой агар (для определения стафилококков), суслоагар или среду Сабуро (для выявления дрожжей и грибов). При определении санитарно- показательных микроорганизмов чашки оставляют открытыми в течение 40-60 мин.

По окончании экспозиции все чашки закрывают, помещают в термостат на сутки для культивирования при температуре, оптимальной для развития выделяемого микроорганизма, затем (если этого требуют исследования) на 48 ч оставляют при комнатной температуре для образования пигмента пигментообразующими микроорганизмами.

Седиментационный метод имеет ряд недостатков: на поверхность среды оседают только грубодисперсные фракции аэрозоля; нередко колонии образуются не из единичной клетки, а из скопления микробов; на применяемых питательных средах вырастает только часть воздушной микрофлоры. К тому же этот метод совершенно непригоден при исследовании бактериальной загрязненности атмосферного воздуха.

Более совершенными методами являются аспирационные, основанные на принудительном осаждении микроорганизмов из воздуха на поверхность плотной питательной среды или в улавливающую жидкость (мясо-пептонный бульон, буферный раствор, изотонический раствор хлорида натрия и др.). В практике санитарной службы при аспирационном взятии проб используются аппарат Кротова, бактериоуловитель Речменского, прибор для отбора проб воздуха (ПОВ-1), пробоотборник аэрозольный бактериологический (ПАБ-1), бактериально-вирусный электропреципитатор (БВЭП-1), прибор Киктенко, приборы Андерсена, Дьяконова, МБ и др. Для исследования атмосферы могут быть использованы и мембранные фильтры № 4, через которые воздух просасывается с помощью аппарата Зейтца. Большое разнообразие приборов свидетельствует об отсутствии универсального аппарата и о большей или меньшей степени их несовершенства.

Прибор Кротова. В настоящее время этот прибор широко применяется при исследовании воздуха закрытых помещений и имеется в лабораториях СЭС.

Принцип работы аппарата Кротова основан на том, что воздух, просасываемый через клиновидную щель в крышке аппарата, ударяется о поверхность питательной среды, при этом частицы пыли и аэрозоля прилипают к среде, а вместе с ними и микроорганизмы, находящиеся в воздухе. Чашку Петри с тонким слоем среды укрепляют на вращающемся столике аппарата, что обеспечивает равномерное распределение бактерий на ее поверхности. Работает аппарат от электросети. После отбора пробы с определенной экспозицией чашку вынимают, закрывают крышкой и помещают на 48 ч в термостат. Обычно отбор проб проводят со скоростью 20-25 л/мин в течение 5 мин.

Таким образом, определяется флора в 100-125 л воздуха. При обнаружении санитарно-показательных микроорганизмов объем исследуемого воздуха увеличивают до 250 л.

Приемник перед забором пробы воздуха заполняется 3-5 мл улавливающей жидкости (водой, мясопептонным бульоном, изотоническим раствором хлорида натрия).

Прибор Речменского работает по принципу пульверизатора: при прохождении воздуха через узкое отверстие воронки жидкость из приемника через капилляр в виде капелек поднимается в цилиндр. Капли жидкости еще больше дробятся, ударяясь о стеклянную лопаточку и стенки сосуда, создавая облачко из мелких капелек, на которых и адсорбируются находящиеся в воздухе микроорганизмы. Насыщенные бактериями капли жидкости стекают в приемник, а затем опять диспергируются, что обеспечивает максимальное улавливание бактерий из воздуха. При работе прибор помещают под углом 15-25°, что обеспечивает стекание улавливающей жидкости в приемник. Скорость отбора проб воздуха через аппарат Речменского - 10-20 л/мин. По окончании работы жидкость из приемника забирают стерильной пипеткой и засевают (по 0,2 мл) на поверхность плотных питательных сред. Преимуществом бактериоуловителя Речменского является высокая эффективность улавливания бактериальных аэрозолей. Недостатки прибора заключаются в трудности его изготовления, нестандартности получаемых аппаратов, их большой хрупкости и сравнительно низкой производительности.

Большим преимуществом являются серийный выпуск этого прибора (что дало возможность оснастить им лаборатории СЭС), его портативность, более высокая производительность (20-25 л/мин). Колба прибора, в которую помещается улавливающая жидкость, изготовляется из термостойкого плексигласа, капилляр из нержавеющей стали. В колбу вмонтирован пульверизатор, вызывающий диспергирование улавливающей жидкости при просасывании воздуха. Такое устройство дает возможность легко очищать и стерилизовать колбу с диспергирующим устройством простым кипячением в течение 30 мин (автоклавирование недопустимо, так как оно вызывает деформацию цилиндра).

Перед забором проб воздуха в колбу вносят 5-10 мл улавливающей жидкости (чаще всего мясопептонный бульон) и устанавливают ее под углом 10°, что обеспечивает естественное стекание жидкости после диспергирования. Воздух, проходя через колбу и пульверизатор, вызывает образование мелких капелек улавливающей жидкости, на которых оседают микроорганизмы. Прибор ПОВ-1 применяется для исследования воздуха закрытых помещений на общую микробную обсемененность, для обнаружения патогенных бактерий (например, микобактерий туберкулеза) и респираторных вирусов в воздухе больничных палат.

Пробоотборник аэрозольный бактериологический (ПАБ-1). Механизм действия ПАБ-1 основан на принципе электростатического осаждения частиц аэрозоля (а следовательно, и микроорганизмов) из воздуха при прохождении его через прибор, в котором эти частицы получают электрический заряд и осаждаются на электродах с противоположным знаком. На электродах для улавливания аэрозолей помещают в горизонтальном положении металлические поддоны с твердыми средами в чашках Петри или жидкой питательной средой (15-20 мл). Прибор переносной с большой производительностью 150-250 л/мин, т.е. за 1 ч можно отобрать 5-6 м 3 воздуха. Его рекомендуют применять для исследования больших объемов воздуха при обнаружении условно-патогенных и патогенных микроорганизмов, например, при выявлении в воздухе палат больниц возбудителей внутрибольничных инфекций (Pseudomonas aeruginosa. Staph, aureus и др.), определении сальмонелл и эшерихий в атмосферном воздухе в местах дождевания при орошении земледельческих полей сточными водами.

Бактериально-вирусный электропреципитатор (БВЭП-1)

Прибор основан на аспирационно-ионизационном принципе действия. БВЭП-1 состоит из осадительной камеры, в которую вмонтированы электроды: отрицательный в виде приводящей трубки, через которую поступает воздух (и частички аэрозоля соответственно заряжаются отрицательно), и положительный, на котором оседают бактерии.

Прибор МБ. Этот прибор служит не только для определения общей микробной обсемененности, но и для отбора проб воздуха с аэрозольными частицами различных размеров. Прибор МБ построен по принципу «сита» и представляет собой цилиндр, разделенный на 6 горизонтальных полос, на каждую из которых помещают чашки Петри с МПА. Воздух просасывается, начиная с верхней ступени, в пластине которой отверстия самые крупные, и чем ниже ступень, тем меньше размером отверстия (через последние проходят только тонкодисперсные фракции воздушного аэрозоля). Прибор рассчитан на улавливание частиц аэрозоля размером более 1 мкм при скорости отбора воздуха 30 л/мин. Уменьшение числа отверстий обеспечивает более равномерное распределение по питательной среде аэрозоля из воздуха. Для улавливания еще более мелких частиц аэрозоля можно добавлять дополнительно фильтр из фильтрующего материала АФА.

При использовании любого из перечисленных приборов получаемые результаты являются приблизительными, однако они дают более правильную оценку обсемененности воздуха в сравнении с седиментационным методом. Поскольку и отбор и санитарно-микробиологические исследования воздуха не регламентированы ГОСТ, то можно использовать любой прибор для оценки бактериальной загрязненности воздуха. Во многих случаях отбор проб совмещен с этапом посева.

Для снижения численности микроорганизмов в воздухе закрытых помещений применяют следующие средства:
а) химические - обработка озоном, двуокисью азота, распыление молочной кислоты,
б) механические - пропускание воздуха через специальные фильтры,
в) физические - ультрафиолетовое облучение.

Определение общей численности сапрофитных бактерий

Общая бактериальная обсемененность воздуха или микробное число - это суммарное количество микроорганизмов, содержащихся в 1 м 3 воздуха. Для определения общего количества бактерий в воздухе закрытых помещений забирают две пробы (объемом по 100 л каждая) на чашки Петри с МПА при помощи любого прибора (чаще всего аппарата Кротова), либо седиментационным методом, расставляя чашки с питательной средой по принципу конверта. Чашки с посевом помещают в термостат на сутки, а затем на 48 ч оставляют при комнатной температуре. Экспозиция чашек с посевами на свету дает возможность подсчитать раздельно количество пигментных колоний (желтых, белых, розовых, черных, оранжевых и др.), количество спорообразующих бацилл, грибов и актиномицетов.

Подсчитывают количество колоний на обеих чашках, вычисляют среднее арифметическое и делают перерасчет на количество микроорганизмов в 1 м 3 воздуха. Бациллы образуют колонии, как правило, крупные, круглые, с неровными краями, сухие, морщинистые. Колонии грибов с пушистым налетом (Мисог и Aspergillus) и плотные - зеленоватые или сероватые (Penicillium). Актиномицеты образуют беловатые колонии, вросшие в агар. Количество каждой группы колоний (пигментных, беспигментных, плесеней, бацилл, актиномицетов) выражают в процентах по отношению к общему числу.

При определении микробного числа методом седиментации по Коху подсчитываются колонии, выросшие на МПА в чашках Петри, и расчет ведется по B.Л. Омелянскому. Если придерживаться этой методики, на чашку площадью 100 см 2 за 5 мин оседает такое количество микробов, которое содержится в 10 л воздуха.

Определение стафилококков

Стафилококки являются одним из наиболее распространенных микроорганизмов в воздухе закрытых помещений, что обусловливается значительной устойчивостью их к различным факторам окружающей среды. Обнаружение патогенных стафилококков в воздухе закрытых помещений имеет санитарно-показательное значение и свидетельствует об эпидемическом неблагополучии. Отбор проб воздуха проводится с помощью аппарата Кротова в количестве 250 л на 2-3 чашки с молочно-желточно-солевым агаром (или молочно- солевым, желточно-солевым) и на чашку с кровяным агаром. Чашки инкубируют при температуре 37°С в течение 48 ч. Изучают культуральные признаки всех видов колоний, из подозрительных готовят мазки и окрашивают по Граму.

Помимо качественной характеристики отдельных колоний, подсчитывают количество выросших колоний стафилококков в 1 м 3 воздуха.

Определение стрептококков

Стрептококки также являются санитарно-показательными микроорганизмами воздуха, в который они попадают от больных скарлатиной, тонзиллитами, ангиной и носителей стрептококков. Отбор проб воздуха при исследовании на наличие а- и р-гемолитических стрептококков производят с помощью аппарата Кротова на чашки с кровяным агаром, средами Гарро и Туржецкого. Забирают 200-250 л воздуха, чашки с посевами выдерживают в термостате 18-24 ч и затем еще 48 ч при комнатной температуре (после предварительного просмотра и учета). Идентификацию проводят по общепринятой методике.

Определение патогенных микроорганизмов в воздухе

Ввиду малой концентрации патогенных микроорганизмов в воздухе закрытых помещений, их выделение является достаточно трудной задачей.

При расшифровке внутрибольничных инфекций определяют в воздухе присутствие стафилококков, стрептококков, синегнойной палочки, сальмонелл, протеев и др. Отбор проб воздуха производят с помощью ПАБ-1 в объеме не менее 1000 л. Посев производят на соответствующие элективные среды. Если используется жидкая среда как улавливающая жидкость, то пробирку с жидкостью помещают в термостат на сутки для подращивания (получение накопительной культуры), а затем высевают на элективную среду.

При исследовании воздуха на наличие микобактерий туберкулеза отбор проб производят с помощью прибора ПОВ-1 в объеме 250-500 л воздуха. В качестве улавливающей жидкости берут среду Школьниковой, которую затем обрабатывают 3% раствором серной кислоты (для подавления сопутствующей микрофлоры) и центрифугируют. Осадок засевают в пробирки на одну из яичных сред, чаще среду Левенштейна - Иенсена. Инкубируют при 37°С до 3 мес. Отсутствие роста в течение 3 мес дает возможность выдать отрицательный ответ. Пробирки первый раз просматривают через 3 нед, затем каждые 10 дней. Выделенную культуру идентифицируют, определяют ее вирулентность (заражением морских свинок - биопроба) и при необходимости определяют устойчивость к лекарственным препаратам.

При определении в воздухе коринебактерий дифтерии для посева воздуха используют чашки со средой Клауберга.

В последние годы определяют в атмосферном воздухе в районах дождевания земледельческих полей, при орошении их сточными водами, сальмонеллы в случае появления заболевания среди персонала станций орошения или населения. Отбор проб производят с помощью аппарата Кротова на чашки с висмут-сульфитным агаром. Исследуют не менее 200 л воздуха. Выделенная культура идентифицируется по обычной схеме определения сальмонелл.

В связи с развитием микробиологической промышленности возникла необходимость исследования воздуха с целью обнаружения грибов-продуцентов при производстве антибиотиков, ферментных препаратов, при изготовлении кормовых дрожжей и др. Для исследования воздуха на плесневые грибы рода Candida отбор проб производят с помощью аппарата Кротова в объеме от 100 до 1000 л на чашки со средой Чапека, суслоагаром (для обнаружения плесневых грибов) и с метабисульфит-натрий- агаром (МБС-агар) с добавлением антибиотиков (для обнаружения дрожжеподобных грибов рода Candida). Чашки инкубируют в термостате при температуре 26-27°С в течение 3-4 сут (для плесневых грибов) и при 35-37°С в течение 2-3 сут (для грибов - продуцентов и дрожжеподобных рода Candida). Идентификация проводится с учетом особенностей плодоносящих гиф и характера мицелия. Считают, что концентрация дрожжеподобных грибов в количестве 500-600 клеток в 1 м 3 воздуха рабочего помещения является предельной, превышение ее ведет к развитию аллергических реакций у рабочих.



Новое на сайте

>

Самое популярное