Домой Отделочные материалы Нервные структуры. Из чего состоит нервная система человека? Причины нарушения деятельности нервной системы

Нервные структуры. Из чего состоит нервная система человека? Причины нарушения деятельности нервной системы

Нервная система является основой любых видов взаимодействия живых существ в окружающем мире, а также системой поддержания гомеостаза у многоклеточных организмов. Чем выше организация живого организма, тем сложнее устроена нервная система. Основная единица нервной системы - это нейрон - клетка, у которой есть короткие отростки дендриты и длинный отросток аксон.

Человеческую нервную систему можно условно разделить на ЦЕНТРАЛЬНУЮ и ПЕРИФЕРИЧЕСКУЮ, а также отдельно выделить вегетативную нервную систему , которая имеет свое представительство как в отделах центральной, так и в отделах периферической нервных систем. Центральная нервная система состоит из головного и спинного мозга, а периферическая нервная система состоит из нервных корешков спинного мозга, черепных, спинно-мозговых и периферических нервов, а так же нервных сплетений.

ГОЛОВНОЙ МОЗГ состоит из:
двух полушарий,
большого мозга ствола мозга,
мозжечка.

Полушария головного мозга разделяют на лобные доли, теменные, височные и затылочные доли. Полушария мозга соединены посредством мозолистого тела.
- Лобные доли отвечают за интеллектуальную и эмоциональную сферу, мышление и сложное поведение, осознанные движения, навыки моторной речи и письма.
- Височные доли ответственны за слух звуковое восприятие, вестибулярную информацию, частичный анализ зрительной информации (например - узнавание лиц), сенсорную часть речи, участие в формировании памяти, влияние на эмоциональный фон, за влияние на вегетативную нервную систему посредством связи с лимбической системой.
- Теменные доли ответственны за различные виду чувствительности (тактильная, болевая температурная, глубокие и сложные пространственные виды чувствительности), пространственную ориентацию и пространственные навыки, чтение, счет.
- Затылочные доли - восприятие и анализ зрительной информации.

Ствол мозга представлен промежуточным мозгом (таламус, эпиталамус, гипоталамус и гипофиз), средним мозгом, варолиевым мостом и продолговатым мозгом. Функции ствола головного мозга отвечают за безусловные рефлексы, влияние на экстрапирамидную систему, вкусовые, зрительные, слуховые и вестибулярные рефлексы, надсегментарный уровень вегетативной системы, контроль эндокринной системы, регуляцию гомеостаза, голод и насыщение, жажду, регуляцию цикла сна-бодрствования, регуляцию дыхания и сердечно-сосудистой системы, терморегуляцию.

Мозжечок состоит из двух полушарий и червя, который соединяет полушария мозжечка. Как большие полушария мозга, так и полушария мозжечка исчерчены бороздами и извилинами. В полушариях мозжечка так же имеются ядра с серым веществом. Полушария мозжечка отвечают за координацию движений и вестибулярную функцию, а червь мозжечка - за поддержание равновесия и поз, тонус мышц. Также мозжечок оказывает влияние на вегетативную нервную систему. В головном мозге имеются четыре желудочка, в системе которых циркулирует ликвор и которые связаны с субарахноидальным пространством черепной полости и позвоночного канала.

Спинной мозг состоит из шейного, грудного, поясничного и крестцового отделов, имеет два утолщения: шейное и поясничное, и центральный спинно-мозговой канал (в котором циркулирует ликвор и который в верхних отделах соединяется с четвертым желудочком головного мозга).

Гистологически ткани мозга можно разделить на серое вещество , в котором находятся нейроны, дендриты (короткие отростки нейронов) и глиальные клетки, и белое вещество , в котором пролегают аксоны, длинные отростки нейронов покрытые миелином. В головном мозге серое вещество, расположено преимущественно в коре полушарий головного мозга, в базальных ядрах полушарий и ядрах ствола мозга (средний мозг, мост и продолговатый мозг), а в спинном мозге серое вещество расположено в глубине (в центральных его отделах), а наружные отделы спинного мозга представлены белым веществом.

Периферические нервы можно разделить на двигательные и чувствительные, образующие рефлекторные дуги, которые контролируются отделами центральной нервной системы.

Вегетативная нервная система имеет разделение на надсегментарную и сегментарную .
- Надсегментарная нервная система расположена в лимбико-ретикулярном комплексе (структуры ствола головного мозга, гипоталамуса и лимбической системы).
- Сегментарная часть нервной системы разделяется на симпатическую, парасимпатическую и метасимпатическую нервные системы. Симпатическая и парасимпатическая нервные системы разделяются так же на центральные и периферическую. Центральные отделы парасимпатической нервной системы расположены в среднем и продолговатом мозге, а центральные отделы симпатической нервной системы расположены в отделах спинного мозга. Метасимпатическая нервная система организована нервными сплетениями и ганглиями в стенках внутренних органов грудной клетки (сердце) и брюшной полости (кишечник, мочевой пузырь и т.д.).

По мере эволюционного усложнения многоклеточных организмов, функциональной специализации клеток, возникла необходимость регуляции и координации жизненных процессов на надклеточном, тканевом, органном, системном и организменном уровнях. Эти новые регуляторные механизмы и системы должны были появиться наряду с сохранением и усложнением механизмов регуляции функций отдельных клеток с помощью сигнальных молекул. Приспособление многоклеточных организмов к изменениям в среде существования могло быть выполнено при условии, что новые механизмы регуляции будут способны обеспечить быстрые, адекватные, адресные ответные реакции. Эти механизмы должны быть способны запоминать и извлекать из аппарата памяти сведения о предыдущих воздействиях на организм, а также обладать другими свойствами, обеспечивающими эффективную приспособительную деятельность организма. Ими стали механизмы нервной системы, появившейся у сложных, высокоорганизованных организмов.

Нервная система — это совокупность специальных структур, объединяющая и координирующая деятельность всех органов и систем организма в постоянном взаимодействии с внешней средой.

К центральной нервной системе относятся головной и спинной мозг. Головной мозг подразделяется на задний мозг ( и варолиев мост), ретикулярную формацию, подкорковые ядра, . Тела образуют серое вещество ЦНС, а их отростки (аксоны и дендриты) — белое вещество.

Общая характеристика нервной системы

Одной из функций нервной системы является восприятие различных сигналов (раздражителей) внешней и внутренней среды организма. Вспомним, что воспринимать разнообразные сигналы среды существования могут любые клетки с помощью специализированных клеточных рецепторов. Однако к восприятию ряда жизненно важных сигналов они не приспособлены и не могут мгновенно передать информацию другим клеткам, которые выполняют функцию регуляторов целостных адекватных реакций организма на действие раздражителей.

Воздействие раздражителей воспринимается специализированными сенсорными рецепторами. Примерами таких раздражителей могут быть кванты света, звуки, тепло, холод, механические воздействия (гравитация, изменение давления, вибрация, ускорение, сжатие, растяжение), а также сигналы сложной природы (цвет, сложные звуки, слово).

Для оценки биологической значимости воспринятых сигналов и организации на них адекватной ответной реакции в рецепторах нервной системы осуществляется их превращение - кодирование в универсальную форму сигналов, понятную нервной системе, — в нервные импульсы, проведение (передана) которых по нервным волокнам и путям в нервные центры необходимы для их анализа.

Сигналы и результаты их анализа используются нервной системой для организации ответных реакции на изменения во внешней или внутренней среде, регуляции и координации функции клеток и надклеточных структур организма. Такие ответные реакции осуществляются эффекторными органами. Наиболее частыми вариантами ответных реакций на воздействия являются моторные (двигательные) реакции скелетной или гладкой мускулатуры, изменение секреции эпителиальных (экзокринных, эндокринных) клеток, инициируемые нервной системой. Принимая прямое участие в формировании ответных реакций на изменения в среде существования, нервная система выполняет функции регуляции гомеостаза, обеспечения функционального взаимодействия органов и тканей и их интеграции в единый целостный организм.

Благодаря нервной системе осуществляется адекватное взаимодействие организма с окружающей средой не только через организацию ответных реакций эффекторными системами, но и через ее собственные психические реакции — эмоции, мотивации, сознание, мышление, память, высшие познавательные и творческие процессы.

Нервную систему подразделяют на центральную (головной и спинной мозг) и периферическую — нервные клетки и волокна за пределами полости черепной коробки и спинномозгового канала. Головной мозг человека содержит более 100 миллиардов нервных клеток (нейронов). Скопления нервных клеток, выполняющих или контролирующих одинаковые функции, формируют в центральной нервной системе нервные центры. Структуры мозга, представленные телами нейронов, формируют серое вещество ЦНС, а отростки этих клеток, объединяясь в проводящие пути, — белое вещество. Кроме этого, структурной частью ЦНС являются глиальные клетки, формирующие нейроглию. Число глиальных клеток приблизительно в 10 раз превышает число нейронов, и эти клетки составляют большую часть массы центральной нервной системы.

Нервную систему по особенностям выполняемых функций и строения делят на соматическую и автономную (вегетативную). К соматической относят структуры нервной системы, которые обеспечивают восприятие сенсорных сигналов преимущественно внешней среды через органы чувств, и контролируют работу поперечно-полосатой (скелетной) мускулатуры. К автономной (вегетативной) нервной системе относят структуры, которые обеспечивают восприятие сигналов преимущественно внутренней среды организма, регулируют работу сердца, других внутренних органов, гладкой мускулатуры, экзокринных и части эндокринных желез.

В центральной нервной системе принято выделять структуры, расположенные на различных уровнях, для которых свойственны специфические функции и роль в регуляции жизненных процессов. Среди них , базальные ядра, структуры ствола мозга, спинной мозг, периферическая нервная система.

Строение нервной системы

Нервную систему подразделяют на центральную и периферическую. К центральной нервной системе (ЦНС) относятся головной и спинной мозг, а к периферической — нервы, отходящие от центральной нервной системы к различным органам.

Рис. 1. Строение нервной системы

Рис. 2. Функциональное деление нервной системы

Значение нервной системы:

  • объединяет органы и системы организма в единое целое;
  • регулирует работу всех органов и систем организма;
  • осуществляет связь организма с внешней средой и приспособление его к условиям среды;
  • составляет материальную основу психической деятельности: речь, мышление, социальное поведение.

Структура нервной системы

Структурно-физиологической единицей нервной системы является - (рис. 3). Он состоит из тела (сомы), отростков (дендритов) и аксона. Дендриты сильно ветвятся и образуют множество синапсов с другими клетками, что определяет их ведущую роль в восприятии нейроном информации. Аксон начинается от тела клетки аксонным холмиком, являющимся генератором нервного импульса, который затем по аксону проводится к другим клеткам. Мембрана аксона в области синапса содержит специфические рецепторы, способные реагировать на различные медиаторы или нейромодуляторы. Поэтому на процесс выделения медиатора пресинаптическими окончаниями могут оказывать влияние другие нейроны. Также мембрана окончаний содержит большое число кальциевых каналов, через которые ионы кальция поступают внутрь окончания при его возбуждении и активизируют выделение медиатора.

Рис. 3. Схема нейрона (по И.Ф. Иванову): а — строение нейрона: 7 — тело (перикарион); 2 — ядро; 3 — дендриты; 4,6 — нейриты; 5,8 — миелиновая оболочка; 7- коллатераль; 9 — перехват узла; 10 — ядро леммоцита; 11 — нервные окончания; б — типы нервных клеток: I — униполярная; II — мультиполярная; III — биполярная; 1 — неврит; 2 -дендрит

Обычно в нейронах потенциал действия возникает в области мембраны аксонного холмика, возбудимость которой в 2 раза выше возбудимости других участков. Отсюда возбуждение распространяется по аксону и телу клетки.

Аксоны, помимо функции проведения возбуждения, служат каналами для транспорта различных веществ. Белки и медиаторы, синтезированные в теле клетки, органеллы и другие вещества могут перемещаться по аксону к его окончанию. Это перемещение веществ получило название аксонного транспорта. Существует два его вида — быстрый и медленный аксонный транспорт.

Каждый нейрон в центральной нервной системе выполняет три физиологические роли: воспринимает нервные импульсы с рецепторов или других нейронов; генерирует собственные импульсы; проводит возбуждение к другому нейрону или органу.

По функциональному значению нейроны подразделяют на три группы: чувствительные (сенсорные, рецепторные); вставочные (ассоциативные); моторные (эффекторные, двигательные).

Помимо нейронов в центральной нервной системе имеются глиальные клетки, занимающие половину объема мозга. Периферические аксоны также окружены оболочкой из глиальных клеток — леммоцитов (шванновские клетки). Нейроны и глиальные клетки разделены межклеточными щелями, которые сообщаются друге другом и образуют заполненное жидкостью межклеточное пространство нейронов и глии. Через это пространств происходит обмен веществами между нервными и глиальными клетками.

Клетки нейроглии выполняют множество функций: опорную, защитную и трофическую роль для нейронов; поддерживают определенную концентрацию ионов кальция и калия в межклеточном пространстве; разрушают нейромедиаторы и другие биологически активные вещества.

Функции центральной нервной системы

Центральная нервная система выполняет несколько функций.

Интегративная: организм животных и человека представляет собой сложную высокоорганизованную систему, состоящую из функционально связанных между собой клеток, тканей, органов и их систем. Эту взаимосвязь, объединение различных составляющих организма в единое целое (интеграция), их согласованное функционирование обеспечивает центральная нервная система.

Координирующая: функции различных органов и систем организма должны протекать согласованно, так как только при таком способе жизнедеятельности возможно поддерживать постоянство внутренней среды, равно как и успешно адаптировать к изменяющимся условиям окружающей среды. Координацию деятельности составляющих организм элементов осуществляет центральная нервная система.

Регулирующая: центральная нервная система регулирует все процессы, протекающие в организме, поэтому при ее участии происходят наиболее адекватные изменения работы различных органов, направленные на обеспечение той или иной его деятельности.

Трофическая: центральная нервная система осуществляет регуляцию трофики, интенсивности обменных процессов в тканях организма, что лежит в основе формирования реакций, адекватных происходящим изменениям во внутренней и внешней среде.

Приспособительная: центральная нервная система осуществляет связь организма с внешней средой путем анализа и синтеза поступающей к ней разнообразной информации от сенсорных систем. Это дает возможность перестраивать деятельность различных органов и систем в соответствии с изменениями среды. Она выполняет функции регулятора поведения, необходимого в конкретных условиях существования. Это обеспечивает адекватное приспособление к окружающему миру.

Формирование ненаправленного поведения: центральная нервная система формирует определенное поведение животного в соответствии с доминирующей потребностью.

Рефлекторная регуляция нервной деятельности

Приспособление процессов жизнедеятельности организма, его систем, органов, тканей к меняющимся условиям среды называется регуляцией. Регуляция, обеспечиваемая совместно нервной и гормональной системами, называется нервно-гормональной регуляцией. Благодаря нервной системе организм осуществляет свою деятельность по принципу рефлекса.

Основным механизмом деятельности центральной нервной системы является — это ответная реакция организма на действия раздражителя, осуществляемая с участием ЦНС и направленная на достижение полезного результата.

Рефлекс в переводе с латинского языка означает «отражение». Термин «рефлекс» был впервые предложен чешским исследователем И.Г. Прохаской, который развил учение об отражательных действиях. Дальнейшее становление рефлекторной теории связано с именем И.М. Сеченова. Он полагал, что все бессознательное и сознательное совершается по типу рефлекса. Но тогда еще не существовало методов объективной оценки деятельности мозга, которые могли бы подтвердить это предположение. Позднее объективный метод оценки деятельности мозга был разработан академиком И.П. Павловым, и он получил название метода условных рефлексов. С помощью этого метода ученый доказал, что в основе высшей нервной деятельности животных и человека лежат условные рефлексы, формирующиеся на базе безусловных рефлексов за счет образования временных связей. Академик П.К. Анохин показал, что все многообразие деятельности животных и человека осуществляется на основе концепции функциональных систем.

Морфологической основой рефлекса является , состоящая из нескольких нервных структур, которая обеспечивает осуществление рефлекса.

В образовании рефлекторной дуги участвуют три вида нейронов: рецепторные (чувствительные), промежуточные (вставочные), двигательные (эффекторные) (рис. 6.2). Они объединяются в нейронные цепи.

Рис. 4. Схема регуляции но принципу рефлекса. Рефлекторная дуга: 1 — рецептор; 2 — афферентный путь; 3 — нервный центр; 4 — эфферентный путь; 5 — рабочий орган (любой орган организма); МН — моторный нейрон; М — мышца; КН — командный нейрон; СН — сенсорный нейрон, МодН — модуляторный нейрон

Дендрит ренепторного нейрона контактирует с рецептором, его аксон направляется в ЦНС и взаимодействует с вставочным нейроном. От вставочного нейрона аксон идет к эффекторному нейрону, а его аксон направляется на периферию к исполнительному органу. Таким образом и формируется рефлекторная дуга.

Рецепторные нейроны расположены на периферии и во внутренних органах, а вставочные и двигательные находятся в ЦНС.

В рефлекторной дуге различают пять звеньев: рецептор, афферентный (или центростремительный) путь, нервный центр, эфферентный (или центробежный) путь и рабочий орган (или эффектор).

Рецептор — специализированное образование, воспринимающее раздражение. Рецептор состоит из специализированных высокочувствительных клеток.

Афферентное звено дуги представляет собой рецепторный нейрон и проводит возбуждение от рецептора к нервному центру.

Нервный центр образован большим числом вставочных и двигательных нейронов.

Это звено рефлекторной дуги состоит из совокупности нейронов, расположенных в различных отделах ЦНС. Нервный центр воспринимает импульсы от рецепторов по афферентному пути, осуществляет анализ и синтез этой информации, затем передает сформированную программу действий по эфферентным волокнам к периферическому исполнительному органу. А рабочий орган осуществляет свойственную ему деятельность (мышца сокращается, железа выделяет секрет и т.д.).

Специальное звено обратной афферентации воспринимает параметры совершенного рабочим органом действия и передает эту информацию в нервный центр. Нервный центр является акцептором действия звена обратной афферентации и воспринимает информацию с рабочего органа о совершенном действии.

Время от начала действия раздражителя на рецептор до появления ответной реакции называется временем рефлекса.

Все рефлексы у животных и человека подразделяются на безусловные и условные.

Безусловные рефлексы - врожденные, наследственно передающиеся реакции. Безусловные рефлексы осуществляются через уже сформированные в организме рефлекторные дуги. Безусловные рефлексы видоспецифичны, т.е. свойственны всем животным данного вида. Они постоянны в течение жизни и возникают в ответ на адекватные раздражения рецепторов. Безусловные рефлексы классифицируются и по биологическому значению: пищевые, оборонительные, половые, локомоторные, ориентировочные. По расположению рецепторов эти рефлексы подразделяются: на экстероцептивные (температурные, тактильные, зрительные, слуховые, вкусовые и др.), интероцептивные (сосудистые, сердечные, желудочный, кишечный и пр.) и проприоцептивные (мышечные, сухожильные и пр.). По характеру ответной реакции — на двигательные, секреторные и др. По нахождению нервных центров, через которые осуществляется рефлекс, — на спинальные, бульбарные, мезэнцефальные.

Условные рефлексы - рефлексы, приобретенные организмом в процессе его индивидуальной жизни. Условные рефлексы осуществляются через вновь сформированные рефлекторные дуги на базе рефлекторных дуг безусловных рефлексов с образованием между ними временной связи в коре больших полушарий.

Рефлексы в организме осуществляются с участием желез внутренней секреции и гормонов.

В основе современных представлений о рефлекторной деятельности организма находится понятие полезного приспособительного результата, для достижения которого и совершается любой рефлекс. Информация о достижении полезного приспособительного результата поступает в центральную нервную систему по звену обратной связи в виде обратной афферентации, которая является обязательным компонентом рефлекторной деятельности. Принцип обратной афферентации в рефлекторной деятельности был разработан П. К. Анохиным и основан на том, что структурной основой рефлекса является не рефлекторная дуга, а рефлекторное кольцо, включающее следующие звенья: рецептор, афферентный нервный путь, нервный центр, эфферентный нервный путь, рабочий орган, обратная афферентация.

При выключении любого звена рефлекторного кольца рефлекс исчезает. Следовательно, для осуществления рефлекса необходима целостность всех звеньев.

Свойства нервных центров

Нервные центры обладают рядом характерных функциональных свойств.

Возбуждение в нервных центрах распространяется односторонне от рецептора к эффектору, что связано со способностью проводить возбуждение только от пресинаптической мембраны к постсинаптической.

Возбуждение в нервных центрах проводится медленнее, чем по нервному волокну, в результате замедления проведения возбуждения через синапсы.

В нервных центрах может происходить суммация возбуждений.

Можно выделить два основных способа суммации: временную и пространственную. При временной суммации несколько импульсов возбуждения приходят к нейрону через один синапс, суммируются и генерируют в нем потенциал действия, а пространственная суммации проявляется в случае поступления импульсов к одному нейрону через разные синапсы.

В них происходит трансформация ритма возбуждения, т.е. уменьшение или увеличение количества импульсов возбуждения, выходящих из нервного центра по сравнению с количеством импульсов, приходящих к нему.

Нервные центры очень чувствительны к недостатку кислорода и действию различных химических веществ.

Нервные центры, в отличие от нервных волокон, способны к быстрому утомлению. Синаптическая утомляемость при длительной активации центра выражается в снижении числа постсинаптических потенциалов. Это обусловлено расходованием медиатора и накоплением метаболитов, закисляющих среду.

Нервные центры находятся в состоянии постоянного тонуса, обусловленного непрерывным поступлением определенного числа импульсов от рецепторов.

Нервным центрам свойственна пластичность — способность увеличивать свои функциональные возможности. Это свойство может быть обусловлено синаптическим облегчением — улучшение проведения в синапсах после короткого раздражения афферентных путей. При частом использовании синапсов ускоряется синтез рецепторов и медиатора.

Наряду с возбуждением в нервном центре происходят процессы торможения.

Координационная деятельность ЦНС и ее принципы

Одной из важных функций центральной нервной системы является координационная функция, которую называют также координационной деятельностью ЦНС. Под ней понимают регуляцию распределения возбуждения и торможения в нейронных структурах, а также взаимодействие между нервными центрами, которые обеспечивают эффективное осуществление рефлекторных и произвольных реакций.

Примером координационной деятельности ЦНС могут быть реципрокные отношения между центрами дыхания и глотания, когда во время глотания центр дыхания затормаживается, надгортанник закрывает вход в гортань и предупреждает попадание в дыхательные пути пищи или жидкости. Координационная функция ЦНС принципиально важна для осуществления сложных движений, осуществляемых при участии множества мышц. Примерами таких движений могут быть артикуляция речи, акт глотания, гимнастические движения, требующие согласованного сокращения и расслабления множества мышц.

Принципы координационной деятельности

  • Реципрокность — взаимное торможение антагонистических групп нейронов (мотонейроны сгибателей и разгибателей)
  • Конечный нейрон — активация эфферентного нейрона с различных рецептивных полей и конкурентная борьба между различными афферентными импульсациями за данный мотонейрон
  • Переключения — процесс перехода активности с одного нервного центра на нервный центр антагонист
  • Индукция — смена возбуждения торможением или наоборот
  • Обратная связь — механизм, обеспечивающий необходимость сигнализации от рецепторов исполнительных органов для успешной реализации функции
  • Доминанта — стойкий главенствующий очаг возбуждения в ЦНС, подчиняющий себе функции других нервных центров.

В основе координационной деятельности центральной нервной системы лежит ряд принципов.

Принцип конвергенции реализуется в конвергентных цепях нейронов, в которых на один из них (обычно эфферентный) сходятся или конвергируют аксоны ряда других. Конвергенция обеспечивает поступление к одному и тому же нейрону сигналов от различных нервных центров или рецепторов различных модальностей (различных органов чувств). На основе конвергенции самые разные раздражители могут вызвать однотипную реакцию. Например, сторожевой рефлекс (поворот глаз и головы — настораживание) может быть вызван и световым, и звуковым, и тактильным воздействием.

Принцип общего конечного пути вытекает из принципа конвергенции и близок по своей сути. Под ним понимают возможность осуществления одной и той же реакции, запускаемой конечным в иерархической нервной цепи эфферентным нейроном, на который конвергируют аксоны множества других нервных клеток. Примером классического конечного пути являются мотонейроны передних рогов спинного мозга или двигательных ядер черепных нервов, которые своими аксонами непосредственно иннервируют мышцы. Одна и та же двигательная реакция (например сгибание руки) может запускаться путем поступления к этим нейронам импульсов от пирамидных нейронов первичной двигательной коры, нейронов ряда моторных центров ствола мозга, интернейронов спинного мозга, аксонов чувствительных нейронов спинальных ганглиев в ответ на действие сигналов, воспринятых разными органами чувств (на световое, звуковое, гравитационное, болевое или механическое воздействие).

Принцип дивергенции реализуется в дивергентных цепях нейронов, в которых один из нейронов имеет ветвящийся аксон, и каждая из ветвей образует синапс с другой нервной клеткой. Эти цепи выполняют функции одновременной передачи сигналов от одного нейрона на многие другие нейроны. Благодаря дивергентным связям происходит широкое распространение (иррадиация) сигналов и быстрое вовлечение в ответную реакцию многих центров, расположенных на разных уровнях ЦНС.

Принцип обратной связи (обратной афферентации) заключается в возможности передачи по афферентным волокнам информации об осуществляемой реакции (например, о движении от проприорецепторов мышц) обратно в нервный центр, который ее запускал. Благодаря обратной связи формируется замкнутая нейронная цепь (контур), через которую можно контролировать ход исполнения реакции, регулировать силу, продолжительность и другие параметры реакции, если они не были реализованы.

Участие обратной связи можно рассмотреть на примере реализации сгибательного рефлекса, вызываемого механическим воздействием на рецепторы кожи (рис. 5). При рефлекторном сокращении мышцы-сгибателя изменяется активность проприорецепторов и частота посылки нервных импульсов по афферентным волокнам к а-мотонейронам спинного мозга, иннервирующим эту мышцу. В результате формируется замкнутый контур регулирования, в котором роль канала обратной связи выполняют афферентные волокна, передающие информацию о сокращении в нервные центры от рецепторов мышц, а роль канала прямой связи — эфферентные волокна мотонейронов, идущие к мышцам. Таким образом, нервный центр (его мотонейроны) получает информацию об изменении состояния мышцы, вызванном передачей импульсов по двигательным волокнам. Благодаря обратной связи образуется своеобразное регуляторное нервное кольцо. Поэтому некоторые авторы предпочитают вместо термина «рефлекторная дуга» применять термин «рефлекторное кольцо».

Наличие обратной связи имеет важное значение в механизмах регуляции кровообращения, дыхания, температуры тела, поведенческих и других реакций организма и рассматривается далее в соответствующих разделах.

Рис. 5. Схема обратной связи в нейронных цепях простейших рефлексов

Принцип реципрокных отношений реализуется при взаимодействии между нервными центрами-антагонистами. Например, между группой моторных нейронов, контролирующих сгибание руки, и группой моторных нейронов, контролирующих разгибание руки. Благодаря реципрокным отношениям возбуждение нейронов одного из антагонистических центров сопровождается торможением другого. В приведенном примере реципрокные отношения между центрами сгибания и разгибания проявятся тем, что во время сокращения мышц- сгибателей руки будет происходить эквивалентное расслабление разгибателей, и наоборот, что обеспечивает плавность сгибательных и разгибательных движений руки. Реципрокные отношения осуществляются за счет активации нейронами возбужденного центра тормозных вставочных нейронов, аксоны которых образуют тормозные синапсы на нейронах антагонистического центра.

Принцип доминанты также реализуется на основе особенностей взаимодействия между нервными центрами. Нейроны доминирующего, наиболее активного центра (очага возбуждения) обладают стойкой высокой активностью и подавляют возбуждение в других нервных центрах, подчиняя их своему влиянию. Более того, нейроны доминирующего центра притягивают к себе афферентные нервные импульсы, адресуемые к другим центрам, и усиливают свою активность за счет поступления этих импульсов. Доминантный центр может длительно находиться в состоянии возбуждения без признаков утомления.

Примером состояния, обусловленного наличием в центральной нервной системе доминантного очага возбуждения, может служить состояние после пережитого человеком важного для него события, когда все его мысли и действия так или иначе становятся связанными с этим событием.

Свойства доминанты

  • Повышенная возбудимость
  • Стойкость возбуждения
  • Инертность возбуждения
  • Способность к подавлению субдоминантных очагов
  • Способность к суммированию возбуждений

Рассмотренные принципы координации могут использоваться, в зависимости от координируемых ЦНС процессов порознь или вместе в различных сочетаниях.

НЕРВНАЯ СИСТЕМА
сложная сеть структур, пронизывающая весь организм и обеспечивающая саморегуляцию его жизнедеятельности благодаря способность реагировать на внешние и внутренние воздействия (стимулы). Основные функции нервной системы - получение, хранение и переработка информации из внешней и внутренней среды, регуляция и координация деятельности всех органов и органных систем. У человека, как и у всех млекопитающих, нервная система включает три основных компонента: 1) нервные клетки (нейроны); 2) связанные с ними клетки глии, в частности клетки нейроглии, а также клетки, образующие неврилемму; 3) соединительная ткань. Нейроны обеспечивают проведение нервных импульсов; нейроглия выполняет опорные, защитные и трофические функции как в головном, так и в спинном мозгу, а неврилемма, состоящая преимущественно из специализированных, т.н. шванновских клеток, участвует в образовании оболочек волокон периферических нервов; соединительная ткань поддерживает и связывает воедино различные части нервной системы. Нервную систему человека подразделяют по-разному. Анатомически она состоит из центральной нервной системы (ЦНС) и периферической нервной системы (ПНС). ЦНС включает головной и спинной мозг, а ПНС, обеспечивающая связь ЦНС с различными частями тела, - черепно-мозговые и спинномозговые нервы, а также нервные узлы (ганглии) и нервные сплетения, лежащие вне спинного и головного мозга.

Нейрон. Структурно-функциональной единицей нервной системы является нервная клетка - нейрон. По оценкам, в нервной системе человека более 100 млрд. нейронов. Типичный нейрон состоит из тела (т.е. ядерной части) и отростков, одного обычно неветвящегося отростка, аксона, и нескольких ветвящихся - дендритов. По аксону импульсы идут от тела клетки к мышцам, железам или другим нейронам, тогда как по дендритам они поступают в тело клетки. В нейроне, как и в других клетках, есть ядро и ряд мельчайших структур - органелл (см. также КЛЕТКА). К ним относятся эндоплазматический ретикулум, рибосомы, тельца Ниссля (тигроид), митохондрии, комплекс Гольджи, лизосомы, филаменты (нейрофиламенты и микротрубочки).



Нервный импульс. Если раздражение нейрона превышает определенную пороговую величину, то в точке стимуляции возникает серия химических и электрических изменений, которые распространяются по всему нейрону. Передающиеся электрические изменения называются нервным импульсом. В отличие от простого электрического разряда, который из-за сопротивления нейрона будет постепенно ослабевать и сумеет преодолеть лишь короткое расстояние, гораздо медленнее "бегущий" нервный импульс в процессе распространения постоянно восстанавливается (регенерирует). Концентрации ионов (электрически заряженных атомов) - главным образом натрия и калия, а также органических веществ - вне нейрона и внутри него неодинаковы, поэтому нервная клетка в состоянии покоя заряжена изнутри отрицательно, а снаружи положительно; в результате на мембране клетки возникает разность потенциалов (т.н. "потенциал покоя" равен примерно -70 милливольтам). Любые изменения, которые уменьшают отрицательный заряд внутри клетки и тем самым разность потенциалов на мембране, называются деполяризацией. Плазматическая мембрана, окружающая нейрон, - сложное образование, состоящее из липидов (жиров), белков и углеводов. Она практически непроницаема для ионов. Но часть белковых молекул мембраны формирует каналы, через которые определенные ионы могут проходить. Однако эти каналы, называемые ионными, открыты не постоянно, а, подобно воротам, могут открываться и закрываться. При раздражении нейрона некоторые из натриевых (Na+) каналов открываются в точке стимуляции, благодаря чему ионы натрия входят внутрь клетки. Приток этих положительно заряженных ионов снижает отрицательный заряд внутренней поверхности мембраны в области канала, что приводит к деполяризации, которая сопровождается резким изменением вольтажа и разрядом - возникает т.н. "потенциал действия", т.е. нервный импульс. Затем натриевые каналы закрываются. Во многих нейронах деполяризация вызывает также открытие калиевых (K+) каналов, вследствие чего ионы калия выходят из клетки. Потеря этих положительно заряженных ионов вновь увеличивает отрицательный заряд на внутренней поверхности мембраны. Затем калиевые каналы закрываются. Начинают работать и другие мембранные белки - т.н. калий-натриевые насосы, обеспечивающие перемещение Na+ из клетки, а K+ внутрь клетки, что, наряду с деятельностью калиевых каналов, восстанавливает исходное электрохимическое состояние (потенциал покоя) в точке стимуляции. Электрохимические изменения в точке стимуляции вызывают деполяризацию в прилегающей точке мембраны, запуская в ней такой же цикл изменений. Этот процесс постоянно повторяется, причем в каждой новой точке, где происходит деполяризация, рождается импульс той же величины, что и в предыдущей точке. Таким образом, вместе с возобновляющимся электрохимическим циклом нервный импульс распространяется по нейрону от точки к точке. Нервы, нервные волокна и ганглии. Нерв - это пучок волокон, каждое из которых функционирует независимо от других. Волокна в нерве организованы в группы, окруженные специализированной соединительной тканью, в которой проходят сосуды, снабжающие нервные волокна питательными веществами и кислородом и удаляющие диоксид углерода и продукты распада. Нервные волокна, по которым импульсы распространяются от периферических рецепторов к ЦНС (афферентные), называют чувствительными или сенсорными. Волокна, передающие импульсы от ЦНС к мышцам или железам (эфферентные), называют двигательными или моторными. Большинство нервов смешанные и состоят как из чувствительных, так и из двигательных волокон. Ганглий (нервный узел) - это скопление тел нейронов в периферической нервной системе. Волокна аксонов в ПНС окружены неврилеммой - оболочкой из шванновских клеток, которые располагаются вдоль аксона, как бусины на нити. Значительное число этих аксонов покрыто дополнительной оболочкой из миелина (белково-липидного комплекса); их называют миелинизированными (мякотными). Волокна же, окруженные клетками неврилеммы, но не покрытые миелиновой оболочкой, называют немиелинизированными (безмякотными). Миелинизированные волокна имеются только у позвоночных животных. Миелиновая оболочка формируется из плазматической мембраны шванновских клеток, которая накручивается на аксон, как моток ленты, образуя слой за слоем. Участок аксона, где две смежные шванновские клетки соприкасаются друг с другом, называется перехватом Ранвье. В ЦНС миелиновая оболочка нервных волокон образована особым типом глиальных клеток - олигодендроглией. Каждая из этих клеток формирует миелиновую оболочку сразу нескольких аксонов. Немиелинизированные волокна в ЦНС лишены оболочки из каких-либо специальных клеток. Миелиновая оболочка ускоряет проведение нервных импульсов, которые "перескакивают" от одного перехвата Ранвье к другому, используя эту оболочку как связующий электрический кабель. Скорость проведения импульсов возрастает с утолщением миелиновой оболочки и колеблется от 2 м/с (по немиелинизированным волокнам) до 120 м/с (по волокнам, особенно богатым миелином). Для сравнения: скорость распространения электрического тока по металлическим проводам - от 300 до 3000 км/с.
Cинапс. Каждый нейрон имеет специализированную связь с мышцами, железами или другими нейронами. Зона функционального контакта двух нейронов называется синапсом. Межнейронные синапсы образуются между различными частями двух нервных клеток: между аксоном и дендритом, между аксоном и телом клетки, между дендритом и дендритом, между аксоном и аксоном. Нейрон, посылающий импульс к синапсу, называют пресинаптическим; нейрон, получающий импульс, - постсинаптическим. Синаптическое пространство имеет форму щели. Нервный импульс, распространяющийся по мембране пресинаптического нейрона, достигает синапса и стимулирует высвобождение особого вещества - нейромедиатора - в узкую синаптическую щель. Молекулы нейромедиатора диффундируют через щель и связываются с рецепторами на мембране постсинаптического нейрона. Если нейромедиатор стимулирует постсинаптический нейрон, его действие называют возбуждающим, если подавляет - тормозным. Результат суммации сотен и тысяч возбуждающих и тормозных импульсов, одновременно стекающихся к нейрону, - основной фактор, определяющий, будет ли этот постсинаптический нейрон генерировать нервный импульс в данный момент. У ряда животных (например, у лангуста) между нейронами определенных нервов устанавливается особо тесная связь с формированием либо необычно узкого синапса, т.н. щелевого соединения, либо, если нейроны непосредственно контактируют друг с другом, плотного соединения. Нервные импульсы проходят через эти соединения не при участии нейромедиатора, а непосредственно, путем электрической передачи. Немногочисленные плотные соединения нейронов имеются и у млекопитающих, в том числе у человека.
Регенерация. К моменту рождения человека все его нейроны и большая часть межнейронных связей уже сформированы, и в дальнейшем образуются лишь единичные новые нейроны. Когда нейрон погибает, он не заменяется новым. Однако оставшиеся могут брать на себя функции утраченной клетки, образуя новые отростки, которые формируют синапсы с теми нейронами, мышцами или железами, с которыми был связан утраченный нейрон. Перерезанные или поврежденные волокна нейронов ПНС, окруженные неврилеммой, могут регенерировать, если тело клетки осталось сохранным. Ниже места перерезки неврилемма сохраняется в виде трубчатой структуры, и та часть аксона, которая осталась связанной с телом клетки, растет по этой трубке, пока не достигнет нервного окончания. Таким образом восстанавливается функция поврежденного нейрона. Аксоны в ЦНС, не окруженные неврилеммой, по-видимому, не способны вновь прорастать к месту прежнего окончания. Однако многие нейроны ЦНС могут давать новые короткие отростки - ответвления аксонов и дендритов, формирующие новые синапсы.
ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА


ЦНС состоит из головного и спинного мозга и их защитных оболочек. Самой наружной является твердая мозговая оболочка, под ней расположена паутинная (арахноидальная), а затем мягкая мозговая оболочка, сращенная с поверхностью мозга. Между мягкой и паутинной оболочками находится подпаутинное (субарахноидальное) пространство, содержащее спинномозговую (цереброспинальную) жидкость, в которой как головной, так и спинной мозг буквально плавают. Действие выталкивающей силы жидкости приводит к тому, что, например, головной мозг взрослого человека, имеющий массу в среднем 1500 г, внутри черепа реально весит 50-100 г. Мозговые оболочки и спинномозговая жидкость играют также роль амортизаторов, смягчающих всевозможные удары и толчки, которые испытывает тело и которые могли бы привести к повреждению нервной системы. ЦНС образована из серого и белого вещества. Серое вещество составляют тела клеток, дендриты и немиелинизированные аксоны, организованные в комплексы, которые включают бесчисленное множество синапсов и служат центрами обработки информации, обеспечивая многие функции нервной системы. Белое вещество состоит из миелинизированных и немиелинизированных аксонов, выполняющих роль проводников, передающих импульсы из одного центра в другой. В состав серого и белого вещества входят также клетки глии. Нейроны ЦНС образуют множество цепей, которые выполняют две основные функции: обеспечивают рефлекторную деятельность, а также сложную обработку информации в высших мозговых центрах. Эти высшие центры, например зрительная зона коры (зрительная кора), получают входящую информацию, перерабатывают ее и передают ответный сигнал по аксонам. Результат деятельности нервной системы - та или иная активность, в основе которой лежит сокращение или расслабление мышц либо секреция или прекращение секреции желез. Именно с работой мышц и желез связан любой способ нашего самовыражения. Поступающая сенсорная информация подвергается обработке, проходя последовательность центров, связанных длинными аксонами, которые образуют специфические проводящие пути, например болевые, зрительные, слуховые. Чувствительные (восходящие) проводящие пути идут в восходящем направлении к центрам головного мозга. Двигательные (нисходящие) пути связывают головной мозг с двигательными нейронами черепно-мозговых и спинномозговых нервов. Проводящие пути обычно организованы таким образом, что информация (например, болевая или тактильная) от правой половины тела поступает в левую часть мозга и наоборот. Это правило распространяется и на нисходящие двигательные пути: правая половина мозга управляет движениями левой половины тела, а левая половина - правой. Из этого общего правила, однако, есть несколько исключений. Головной мозг состоит из трех основных структур: больших полушарий, мозжечка и ствола. Большие полушария - самая крупная часть мозга - содержат высшие нервные центры, составляющие основу сознания, интеллекта, личности, речи, понимания. В каждом из больших полушарий выделяют следующие образования: лежащие в глубине обособленные скопления (ядра) серого вещества, которые содержат многие важные центры; расположенный над ними крупный массив белого вещества; покрывающий полушария снаружи толстый слой серого вещества с многочисленными извилинами, составляющий кору головного мозга. Мозжечок тоже состоит из расположенного в глубине серого вещества, промежуточного массива белого вещества и наружного толстого слоя серого вещества, образующего множество извилин. Мозжечок обеспечивает главным образом координацию движений. Ствол мозга образован массой серого и белого вещества, не разделенной на слои. Ствол тесно связан с большими полушариями, мозжечком и спинным мозгом и содержит многочисленные центры чувствительных и двигательных проводящих путей. Первые две пары черепно-мозговых нервов отходят от больших полушарий, остальные же десять пар - от ствола. Ствол регулирует такие жизненно важные функции, как дыхание и кровообращение.
См. также ГОЛОВНОЙ МОЗГ ЧЕЛОВЕКА .
Спинной мозг. Находящийся внутри позвоночного столба и защищенный его костной тканью спинной мозг имеет цилиндрическую форму и покрыт тремя оболочками. На поперечном срезе серое вещество имеет форму буквы Н или бабочки. Серое вещество окружено белым веществом. Чувствительные волокна спинномозговых нервов заканчиваются в дорсальных (задних) отделах серого вещества - задних рогах (на концах Н, обращенных к спине). Тела двигательных нейронов спинномозговых нервов расположены в вентральных (передних) отделах серого вещества - передних рогах (на концах Н, удаленных от спины). В белом веществе проходят восходящие чувствительные проводящие пути, заканчивающиеся в сером веществе спинного мозга, и нисходящие двигательные пути, идущие от серого вещества. Кроме того, многие волокна в белом веществе связывают различные отделы серого вещества спинного мозга.
ПЕРИФЕРИЧЕСКАЯ НЕРВНАЯ СИСТЕМА
ПНС обеспечивает двустороннюю связь центральных отделов нервной системы с органами и системами организма. Анатомически ПНС представлена черепно-мозговыми (черепными) и спинномозговыми нервами, а также относительно автономной энтеральной нервной системой, локализованной в стенке кишечника. Все черепно-мозговые нервы (12 пар) разделяют на двигательные, чувствительные либо смешанные. Двигательные нервы начинаются в двигательных ядрах ствола, образованных телами самих моторных нейронов, а чувствительные нервы формируются из волокон тех нейронов, тела которых лежат в ганглиях за пределами мозга. От спинного мозга отходит 31 пара спинномозговых нервов: 8 пар шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковая. Их обозначают в соответствии с положением позвонков, прилежащих к межпозвоночным отверстиям, из которых выходят данные нервы. Каждый спинномозговой нерв имеет передний и задний корешки, которые, сливаясь, образуют сам нерв. Задний корешок содержит чувствительные волокна; он тесно связан со спинальным ганглием (ганглием заднего корешка), состоящим из тел нейронов, аксоны которых образуют эти волокна. Передний корешок состоит из двигательных волокон, образованных нейронами, клеточные тела которых лежат в спинном мозге.
ВЕГЕТАТИВНАЯ НЕРВНАЯ СИСТЕМА
Вегетативная, или автономная, нервная система регулирует деятельность непроизвольных мышц, сердечной мышцы и различных желез. Ее структуры расположены как в центральной нервной системе, так и в периферической. Деятельность вегетативной нервной системы направлена на поддержание гомеостаза, т.е. относительно стабильного состояния внутренней среды организма, например постоянной температуры тела или кровяного давления, соответствующего потребностям организма. Сигналы от ЦНС поступают к рабочим (эффекторным) органам через пары последовательно соединенных нейронов. Тела нейронов первого уровня располагаются в ЦНС, а их аксоны оканчиваются в вегетативных ганглиях, лежащих за пределами ЦНС, и здесь образуют синапсы с телами нейронов второго уровня, аксоны которых непосредственно контактируют с эффекторными органами. Первые нейроны называют преганглионарными, вторые - постганглионарными. В той части вегетативной нервной системы, которую называют симпатической, тела преганглионарных нейронов расположены в сером веществе грудного (торакального) и поясничного (люмбального) отделов спинного мозга. Поэтому симпатическую систему называют также торако-люмбальной. Аксоны ее преганглионарных нейронов оканчиваются и образуют синапсы с постганглионарными нейронами в ганглиях, расположенных цепочкой вдоль позвоночника. Аксоны постганглионарных нейронов контактируют с эффекторными органами. Окончания постганглионарных волокон выделяют в качестве нейромедиатора норадреналин (вещество, близкое к адреналину), и потому симпатическая система определяется также как адренергическая. Симпатическую систему дополняет парасимпатическая нервная система. Тела ее преганглинарных нейронов расположены в стволе мозга (интракраниально, т.е. внутри черепа) и крестцовом (сакральном) отделе спинного мозга. Поэтому парасимпатическую систему называют также кранио-сакральной. Аксоны преганглионарных парасимпатических нейронов оканчиваются и образуют синапсы с постганглионарными нейронами в ганглиях, расположенных вблизи рабочих органов. Окончания постганглионарных парасимпатических волокон выделяют нейромедиатор ацетилхолин, на основании чего парасимпатическую систему называют также холинергической. Как правило, симпатическая система стимулирует те процессы, которые направлены на мобилизацию сил организма в экстремальных ситуациях или в условиях стресса. Парасимпатическая же система способствует накоплению или восстановлению энергетических ресурсов организма. Реакции симпатической системы сопровождаются расходом энергетических ресурсов, повышением частоты и силы сердечных сокращений, возрастания кровяного давления и содержания сахара в крови, а также усилением притока крови к скелетным мышцам за счет уменьшения ее притока к внутренним органам и коже. Все эти изменения характерны для реакции "испуга, бегства или борьбы". Парасимпатическая система, наоборот, уменьшает частоту и силу сердечных сокращений, снижает кровяное давление, стимулирует пищеварительную систему. Симпатическая и парасимпатическая системы действуют координированно, и их нельзя рассматривать как антагонистические. Они сообща поддерживают функционирование внутренних органов и тканей на уровне, соответствующем интенсивности стресса и эмоциональному состоянию человека. Обе системы функционируют непрерывно, но уровни их активности колеблются в зависимости от ситуации.
РЕФЛЕКСЫ
Когда на рецептор сенсорного нейрона воздействует адекватный стимул, в нем возникает залп импульсов, запускающих ответное действие, именуемое рефлекторным актом (рефлексом). Рефлексы лежат в основе большинства проявлений жизнедеятельности нашего организма. Рефлекторный акт осуществляет т.н. рефлекторная дуга; этим термином обозначают путь передачи нервных импульсов от точки исходной стимуляции на теле до органа, совершающего ответное действие. Дуга рефлекса, вызывающего сокращение скелетной мышцы, состоит по меньшей мере из двух нейронов: чувствительного, тело которого расположено в ганглии, а аксон образует синапс с нейронами спинного мозга или ствола мозга, и двигательного (нижнего, или периферического, мотонейрона), тело которого находится в сером веществе, а аксон оканчивается двигательной концевой пластинкой на скелетных мышечных волокнах. В рефлекторную дугу между чувствительным и двигательным нейронами может включаться и третий, промежуточный, нейрон, расположенный в сером веществе. Дуги многих рефлексов содержат два и более промежуточных нейрона. Рефлекторные действия осуществляются непроизвольно, многие из них не осознаются. Коленный рефлекс, например, вызывается постукиванием по сухожилию четырехглавой мышцы в области колена. Это двухнейронный рефлекс, его рефлекторная дуга состоит из мышечных веретен (мышечных рецепторов), чувствительного нейрона, периферического двигательного нейрона и мышцы. Другой пример - рефлекторное отдергивание руки от горячего предмета: дуга этого рефлекса включает чувствительный нейрон, один или несколько промежуточных нейронов в сером веществе спинного мозга, периферический двигательный нейрон и мышцу. Многие рефлекторные акты имеют значительно более сложный механизм. Так называемые межсегментарные рефлексы складываются из комбинаций более простых рефлексов, в осуществлении которых принимают участие многие сегменты спинного мозга. Благодаря таким рефлексам обеспечивается, например, координация движений рук и ног при ходьбе. К сложным рефлексам, замыкающимся в головном мозге, относятся движения, связанные с поддержанием равновесия. Висцеральные рефлексы, т.е. рефлекторные реакции внутренних органов, опосредуются вегетативной нервной системой; они обеспечивают опорожнение мочевого пузыря и многие процессы в пищеварительной системе.
См. также РЕФЛЕКС .
ЗАБОЛЕВАНИЯ НЕРВНОЙ СИСТЕМЫ
Поражения нервной системы возникают при органических заболеваниях или травмах головного и спинного мозга, мозговых оболочек, периферических нервов. Диагностика и лечение заболеваний и травм нервной системы составляют предмет особой отрасли медицины - неврологии. Психиатрия и клиническая психология занимаются главным образом психическими расстройствами. Сферы этих медицинских дисциплин часто перекрываются. См. отдельные заболевания нервной системы: АЛЬЦГЕЙМЕРА БОЛЕЗНЬ ;
ИНСУЛЬТ ;
МЕНИНГИТ ;
НЕВРИТ ;
ПАРАЛИЧ ;
ПАРКИНСОНА БОЛЕЗНЬ ;
ПОЛИОМИЕЛИТ ;
РАССЕЯННЫЙ СКЛЕРОЗ ;
СТОЛБНЯК ;
ДЕТСКИЙ ЦЕРЕБРАЛЬНЫЙ ПАРАЛИЧ ;
ХОРЕЯ ;
ЭНЦЕФАЛИТ ;
ЭПИЛЕПСИЯ .
См. также
АНАТОМИЯ СРАВНИТЕЛЬНАЯ ;
АНАТОМИЯ ЧЕЛОВЕКА .
ЛИТЕРАТУРА
Блум Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум и поведение. М., 1988 Физиология человека, под ред. Р.Шмидта, Г.Тевса, т. 1. М., 1996

Энциклопедия Кольера. - Открытое общество . 2000 .

Нервная система - целостная морфологическая и функциональная совокупность различных взаимосвязанных нервных структур, которая совместно с гуморальной системой обеспечивает взаимосвязанную регуляцию деятельности всех систем организма и реакцию на изменение условий внутренней и внешней среды. Нервная система состоит из нейронов, или нервных клеток и нейроглиальных клеток(нейроглии). Нейроны - это основные структурные и функциональные элементы как в центральной, так и периферической нервной системе. Нейроны - это возбудимые клетки, то есть они способны генерировать и передавать электрические импульсы (потенциалы действия). Нейроны имеют различную форму и размеры, формируют отростки двух типов: аксоны и дендриты . У нейрона обычно несколько коротких разветвленных дендритов, по которым импульсы следуют к телу нейрона, и один длинный аксон, по которому импульсы идут от тела нейрона к другим клеткам (нейронам, мышечным либо железистым клеткам). Передача возбуждения с одного нейрона на другие клетки происходит посредством специализированных контактов - синапсов. Нейроглиальные клетки более многочисленны, чем нейроны и составляют по крайней мере половину объема центральной нервной системы , но в отличие от нейронов они не могут генерировать потенциалов действия. Нейроглиальные клетки различны по строению и происхождению, они выполняют вспомогательные функции в нервной системе, обеспечивая опорную, трофическую, секреторную, разграничительную и защитную функции. По функциональному назначению различают 1) соматическую или анимальную нервную систему, 2) автономную или вегетативную нервную систему .

В свою очередь, в вегетативной нервной системе выделяют:

  • Симпатический отдел вегетативной нервной системы,
  • Парасимпатический отдел вегетативной нервной системы,
  • Метасимпатический отдел вегетативной нервной системы (энтеральная нервная система).

Центральная нервная система (ЦНС) - основная часть нервной системы животных и человека, состоящая из скопления нервных клеток (нейронов) и их отростков; представлена у беспозвоночных системой тесно связанных между собой нервных узлов (ганглиев), у позвоночных животных и человека - спинным и головным мозгом.

Главная и специфическая функция ЦНС - осуществление простых и сложных высокодифференцированных отражательных реакций, получивших название . У высших животных и человека низшие и средние отделы ЦНС - спинной мозг, продолговатый мозг, средний мозг, промежуточный мозг и мозжечок - регулируют деятельность отдельных органов и систем высокоразвитого организма, осуществляют связь и взаимодействие между ними, обеспечивают единство организма и целостность его деятельности. Высший отдел ЦНС - кора больших полушарий головного мозга и ближайшие подкорковые образования - в основном регулирует связь и взаимоотношения организма как единого целого с окружающей средой.

ЦНС связана со всеми органами и тканями через периферическую нервную систему, которая у позвоночных включает черепномозговые нервы, отходящие от головного мозга, и спинномозговые нервы - от спинного мозга, межпозвонковые нервные узлы, а также периферический отдел вегетативной нервной системы - нервные узлы, с подходящими к ним (преганглионарными) и отходящими от них (постганглионарными) нервными волокнами. Чувствительные, или афферентные, нервные приводящие волокна несут возбуждение в ЦНС от периферических рецепторов; по отводящим эфферентным (двигательным и вегетативным) нервным волокнам возбуждение из ЦНС направляется к клеткам исполнительных рабочих аппаратов (мышцы, железы, сосуды и т. д.). Во всех отделах ЦНС имеются афферентные нейроны, воспринимающие приходящие с периферии раздражения, и эфферентные нейроны, посылающие нервные импульсы на периферию к различным исполнительным эффекторным органам. Афферентные и эфферентные клетки своими отростками могут контактировать между собой и составлять двухнейронную рефлекторную дугу, осуществляющую элементарные рефлексы (например, сухожильные рефлексы спинного мозга). Но, как правило, в рефлекторной дуге между афферентными и эфферентными нейронами расположены вставочные нервные клетки, или интернейроны. Связь между различными отделами ЦНС осуществляется также с помощью множества отростков афферентных, эфферентных и вставочных нейронов этих отделов, образующих внутрицентральные короткие и длинные проводящие пути. В состав ЦНС входят также клетки нейроглии, которые выполняют в ней опорную функцию, а также участвуют в метаболизме нервных клеток.

Вегетативная нервная система - часть нервной системы, имеющая двухнейронный принцип строения и иннервирующая внутренние органы, гладкую мускулатуру, сердце, железы внутренней секреции и кожу;

Посредством вегетативной нервной системы центральная нервная система регулирует функции внутренних органов, кровоснабжение и трофику всех органов. В вегетативной нервной системе выделяют симпатический и парасимпатический отделы.

Симпатическая нервная система - периферическая часть вегетативной нервной системы, обеспечивающая мобилизацию имеющихся у организма для выполнения срочной работы. Симпатическая нервная система стимулирует работу сердца, сужает кровеносные сосуды и усиливает работоспособность скелетных мышц. Симпатическая нервная система представлена:

  • серым веществом боковых рогов спинного мозга;
  • двумя симметричными симпатическими стволами с их ганглиями;
  • межузловыми и соединительными ветвями; а также
  • ветвями и ганглиями, участвующими в образовании нервных сплетений.

Парасимпатическая нервная система - периферическая часть вегетативной нервной системы, ответственная за поддержание постоянства внутренней среды организма. Парасимпатическая нервная система состоит из:

  • краниального отдела, в котором преганглионарные волокна покидают средний и ромбовидный мозг в составе нескольких черепно-мозговых нервов; и
  • сакрального отдела, в котором преганглионарные волокна выходят из спинного мозга в составе его вентральных корешков.

Парасимпатическая нервная система тормозит работу сердца, расширяет некоторые кровеносные сосуды.

Основные направления исследований нервной системы

Современная наука о нервной системе объединяет многие научные дисциплины: наряду с классическими нейроанатомией, неврологией и нейрофизиологией, важный вклад в изучение нервной системы вносят молекулярная биология и генетика, химия, кибернетика и ряд других наук. Такой междисциплинарный подход к изучению нервной системы нашел отражение в термине – нейронаука (neuroscience). В русскоязычной научной литературе в качестве синонима часто используется термин «нейробиология». Одной из основных целей нейронауки является понимание процессов, происходящих как на уровне отдельных нейронов, так и нейронных сетей, итогом которых являются различные психические процессы: мышление, эмоции, сознание. <В соответствие с этой задачей изучение нервной системы ведется на разных уровнях организация, начиная с молекулярного и заканчивая изучением сознания, творческих способностей и социального поведения.

Нервные окончания расположены во всем человеческом теле. Они несут важнейшую функцию и являются составной частью всей системы. Строение нервной системы человека представляет сложную разветвленную структуру, которая проходит через весь организм.

Физиология нервной системы является сложной составной структурой.

Нейрон считается основной структурной и функциональной единицей нервной системы. Его отростки формируют волокна, которые возбуждаются при воздействии и передают импульс. Импульсы достигают центров, где подвергаются анализу. Проанализировав полученный сигнал, мозг передает необходимую реакцию на раздражитель соответствующим органам или частям тела. Нервная система человека кратко описывается следующими функциями:

  • обеспечение рефлексов;
  • регуляция внутренних органов;
  • обеспечение взаимодействия организма с внешней средой, путем приспособления тела к изменяющимся внешним условиям и раздражителям;
  • взаимодействие всех органов.

Значение нервной системы заключается в обеспечении жизнедеятельности всех частей организма, а также взаимодействии человека с окружающим миром. Строение и функции нервной системы изучаются неврологией.

Структура ЦНС

Анатомия центральной нервной системы (ЦНС) является скоплением нейронных клеток и нейронных отростков спинномозгового отдела и головного мозга. Нейрон – это единица нервной системы.

Функция ЦНС – это обеспечение рефлекторной деятельности и обработка импульсов, поступающих от ПНС.

Анатомия центральной нервной системы, основным узлом которой является головной мозг, представляет собой сложную структуру из разветвленных волокон.

В больших полушариях сосредоточены высшие нервные центры. Это – сознание человека, его личность, его интеллектуальные способности и речь. Основная функция мозжечка – это обеспечение координации движений. Ствол мозга неразрывно связан с полушариями и мозжечком. В этом отделе находятся основные узлы двигательных и чувствительных проводящих путей, благодаря чему обеспечиваются такие жизненно важные функции организма, как регуляция кровообращения и обеспечение дыхания. Спинной мозг является распределительной структурой ЦНС, он обеспечивает разветвление волокон, образующих ПНС.

Спинномозговой узел (ганглий) является местом сосредоточения чувствительных клеток. С помощью спинномозгового ганглия осуществляется деятельность вегетативного отдела периферической нервной системы. Ганглии или нервные узлы в нервной системе человека относят к ПНС, они выполняют функцию анализаторов. Ганглии не относятся к центральной нервной системе человека.

Особенности строения ПНС

Благодаря ПНС происходит регулирование деятельности всего организма человека. ПНС состоит из черепных и спинномозговых нейронов и волокон, образующих ганглии.

У периферической нервной системы человека строение и функции очень сложные, поэтому любое малейшее повреждение, например, повреждение сосудов на ногах, может вызвать серьезные нарушения ее работы. Благодаря ПНС осуществляется контроль за всеми частями организма и обеспечивается жизнедеятельность всех органов. Значение этой нервной системы для организма переоценить невозможно.

ПНС делится на два подразделения – это соматическая и вегетативная системы ПНС.

Соматическая нервная система выполняет двойную работу – сбор информации от органов чувств, и дальнейшая передача этих данных в ЦНС, а также обеспечение двигательной активности организма, путем передачи импульсов от ЦНС в мышцы. Таким образом, именно нервная система соматическая является инструментом взаимодействия человека с окружающим миром, так как она обрабатывает сигналы, получаемые от органов зрения, слуха и вкусовых рецепторов.

Вегетативная нервная система обеспечивает выполнение функций всех органов. Она контролирует сердцебиение, кровоснабжение, дыхательную деятельность. В ее составе – только двигательные нервы, регулирующие сокращение мышц.

Для обеспечения сердцебиения и кровоснабжения не требуются усилия самого человека – этим управляет именно вегетативная часть ПНС. Принципы строения и функции ПНС изучаются в неврологии.

Отделы ПНС

ПНС также состоит из афферентной нервной системы и эфферентного отдела.

Афферентный отдел представляет собой совокупность сенсорных волокон, которые обрабатывают информацию от рецепторов и передают ее в головной мозг. Работа этого отдела начинается тогда, когда рецептор раздражается из-за какого-либо воздействия.

Эфферентная система отличается тем, что обрабатывает импульсы, передающиеся от головного мозга к эффекторам, то есть мышцам и железам.

Одна из важных частей вегетативного отдела ПНС – это энтеральная нервная система. Энтеральная нервная система формируется из волокон, расположенных в ЖКТ и мочевыделительных путях. Энтеральная нервная система обеспечивает моторику тонкой и толстой кишки. Этот отдел также регулирует секрет, выделяемый в ЖКТ, и обеспечивает местное кровоснабжение.

Значение нервной системы заключается в обеспечении работы внутренних органов, интеллектуальной функции, моторике, чувствительности и рефлекторной деятельности. ЦНС ребенка развивается не только во внутриутробный период, но и на протяжение первого года жизни. Онтогенез нервной системы начинается с первой недели после зачатия.

Основа для развития головного мозга формируется уже на третьей неделе после зачатия. Основные функциональные узлы обозначаются к третьему месяцу беременности. К этому сроку уже сформированы полушария, ствол и спинной мозг. К шестому месяцу высшие отделы мозга уже развиты лучше, чем спинальный отдел.

К моменту появления малыша на свет, наиболее развитым оказывается головной мозг. Размеры мозга у новорожденного составляют примерно восьмую часть веса ребенка и колеблются в пределах 400 г.

Деятельность ЦНС и ПНС сильно понижена в первые несколько дней после рождения. Это может заключаться в обилии новых раздражающих факторов для малыша. Так проявляется пластичность нервной системы, то есть способностью этой структуры перестраиваться. Как правило, повышение возбудимости происходит постепенно, начиная с первых семи дней жизни. Пластичность нервной системы с возрастом ухудшается.

Типы ЦНС

В центрах, расположенных в коре мозга, одновременно взаимодействуют два процесса – торможение и возбуждение. Скорость смены этих состояний определяет типы нервной системы. В то время как возбужден один участок центра ЦНС, другой замедляется. Этим обусловлены особенности интеллектуальной деятельности, такие как внимание, память, сосредоточенность.

Типы нервной системы описывают отличия между скоростью процессов торможения и возбуждения ЦНС у разных людей.

Люди могут отличаться по характеру и темпераменту, в зависимости от особенностей процессов в ЦНС. К ее особенностям относят скорость переключения нейронов с процесса торможения на процесс возбуждения, и наоборот.

Типы нервной системы делятся на четыре вида.

  • Слабый тип, или меланхолик, считают наиболее предрасположенным к возникновению неврологических и психоэмоциональных расстройств. Он отличается медленными процессами возбуждения и торможения. Сильный и неуравновешенный тип – это холерик. Этот тип отличается преобладанием процессов возбуждения над процессами торможения.
  • Сильный и подвижный – это тип сангвиника. Все процессы, проистекающие в коре головного мозга сильны и активны. Сильный, но инертный, или флегматический тип, отличается низкой скоростью переключения нервных процессов.

Типы нервной системой взаимосвязаны с темпераментами, но эти понятия следует различать, ведь темперамент характеризует набор психоэмоциональных качеств, а тип ЦНС описывает физиологические особенности процессов, происходящих в ЦНС.

Защита ЦНС

Анатомия нервной системы очень сложная. ЦНС и ПНС страдают из-за воздействия стресса, перенапряжения и недостатка питания. Для нормального функционирования ЦНС необходимы витамины, аминокислоты и минералы. Аминокислоты принимают участие в работе мозга и являются строительным материалом для нейронов. Разобравшись, зачем и для чего нужны витамины и аминокислоты, становится ясно, как важно обеспечить организм необходимым количеством этих веществ. Особенно для человека важны глютаминовая кислота, глицин и тирозин. Схема приема витаминно-минеральных комплексов для профилактики заболеваний ЦНС и ПНС подбирается индивидуально лечащим врачом.

Повреждения пучков нервных волокон, врожденные патологии и аномалии развития мозга, а также действие инфекций и вирусов – все это приводит к нарушению работы ЦНС и ПНС и развитию различных патологических состояний. Такие патологии могут вызвать ряд очень опасных заболеваний — обездвиживание, парез, атрофия мышц, энцефалит и многое другое.

Злокачественные новообразования в головном или спинном мозге приводят к ряду неврологических нарушений. При подозрениях на онкологическое заболевания ЦНС назначается анализ — гистология пораженных отделов, то есть обследование состава ткани. Нейрон как часть клетки также может мутировать. Такие мутации позволяет выявить гистология. Гистологический анализ проводится по показаниям врача и заключается в сборе пораженной ткани и ее дальнейшем изучении. При доброкачественных образования также проводится гистология.

В теле человека находится множество нервных окончаний, повреждение которых может вызвать ряд проблем. Повреждение зачастую приводит к нарушению подвижности части тела. Например, повреждение руки может привести к боли на пальцах рук и нарушению их движения. Остеохондроз позвоночника спровоцировать возникновение болей на стопе из-за того, что раздраженный или передавленный нерв посылает болевые импульсы рецепторам. Если болит ступня, люди часто ищут причину в долгой ходьбе или травме, но болевой синдром может быть спровоцирован повреждением в позвоночнике.

При подозрении на повреждение ПНС, а также при любых сопутствующих проблемах необходимо пройти осмотр у специалиста.



Новое на сайте

>

Самое популярное