Домой Печи и системы отопления Горит электропроводка. Какие неисправности электропроводки могут привести к пожару

Горит электропроводка. Какие неисправности электропроводки могут привести к пожару

В деревне Ленковщина Молодечненского района произошел пожар. Жилой дом выгорел изнутри полностью, перекрытие и кровля уничтожены по всей площади. Погиб человек - инвалид 1994 года рождения. Причиной трагедии стала неисправная проводка. Как выяснилось, мать, уходя на работу, оставила для сына включенным телевизор.

Именно в комнате, где работал телевизор, и начался пожар...

За девять месяцев нынешнего года из-за нарушения правил устройства и эксплуатации электросетей и электрооборудования произошло 903 пожара. В огне погибли 29 человек.

Проблема нарушения правил устройства и эксплуатации электропроводки становится особенно актуальной с наступлением холодов, когда увеличивается нагрузка на электросети, - отмечает главный специалист управления надзора и профилактики МЧС Юрий Лапицкий.

Хозяева новые, проводка старая

В 1980-х приборы бытовой электротехники в среднестатистической квартире можно было пересчитать по пальцам одной руки. Но вот в старую квартиру или дом въезжает молодая семья. Современный человек уже не представляет свой быт без стиральной машины, микроволновки, компьютера. Электрооборудование создает повышенную нагрузку на электрические сети, спроектированные более 30 лет назад и рассчитанные лишь на холодильник и телевизор...

Даже в новых, недавно построенных квартирах проводка рассчитана на среднее количество электроприборов, а не на три телевизора, два холодильника и несколько ноутбуков, одновременно включенных в сеть, говорят спасатели. И тут уж безопасность должна стать заботой самих жильцов.

Въезжая в только что построенный дом или квартиру, целесообразно пригласить специалиста, который проконсультировал бы, какие аппараты защиты необходимо установить в электрощитовой, - рассказывает Юрий Лапицкий. - То же самое важно сделать, приобретя квартиру или дом, построенные десятилетия назад. Оценку необходимого уровня защиты электросети может произвести только специалист - например, электрик из ЖЭСа, другой специализированной организации. Как правило, предохраняющие устройства устанавливаются на каждые два-три эксплуатируемых электроприбора. В случае опасного скачка напряжения предохранители отключат подачу электричества на соответствующий участок.

Как правило, в современном доме кухня самый сложный по нагрузке участок - помимо холодильника, вытяжки, подсветки, СВЧ-печи, электрочайника и т. д. там хозяйки любят еще устанавливать телевизор, кухонный комбайн. И именно на таких участках нужен дополнительный аппарат защиты, который отключит подачу электричества в случае короткого замыкания.

Разумеется, необходимо вложить определенные средства. Но это вложения в собственную безопасность. Аппараты защиты недороги и продаются практически в каждом хозяйственном магазине, в гипермаркетах и строительных супермаркетах. В сельские населенные пункты они доставляются автомагазинами райпо.

Три миллиона за “жучок”

Группа риска - малоимущие категории граждан: одинокие и одиноко проживающие пенсионеры, инвалиды, многодетные семьи, - рассказывает собеседник. - Положительной тенденции снижения пожаров во многом способствовала реализация соответствующих госпрограмм, предусматривающих в том числе приведение в пожаробезопасное состояние электропроводки. Проводка уже заменена в рамках этих программ в нынешнем году в 10 тысячах домовладений.

За нарушение норм и правил пожарной безопасности предусмотрена административная ответственность - штраф до 30 базовых величин.

Любой взрослый человек способен оценить, когда пора менять проводку: если проводка не выдерживает нагрузки, постоянно срабатывает предохранитель, как говорят, “выбивает пробки”. Если проводка ветхая, осыпается оплетка, на изоляции трещины. И уж конечно, пора принимать меры, если проступают оголенные провода.

Менять проводку сотрудники МЧС обязывают хозяев дома или квартиры, когда в предохранителе находят “жучок” - некалиброванную плавкую вставку. “Народные умельцы” наматывают проволоку на неисправный предохранитель и вставляют его в счетчик. Свет есть и все электроприборы работают, но если будет короткое замыкание, аппарат защиты уже не отключит подачу электроэнергии на опасный участок электропроводки, и в лучшем случае выйдет из строя холодильник или телевизор, а в худшем - дом одномоментно вспыхнет по периметру.

Разумеется, наиболее проблемная категория подобных “умельцев” - лица, ведущие асоциальный образ жизни. Но подобными хитростями грешат и вполне благополучные граждане. Кому-то лень или некогда сходить в магазин за новыми предохранителями, у кого-то на сеть предельная нагрузка и постоянно “выбивает пробки”... Люди надеются на авось, а расплатиться за беспечность могут потерей имущества, своей жизнью и жизнью близких. Не слишком ли высока цена беспечности?

Электроэнергия является неотъемлемой частью жизни каждого человека, которая делает существование проще и комфортнее. Однако при не соблюдении определенных правил эксплуатации электричества или работа с неисправными электроприборами может привести к порче имущества или возникнет угроза жизни и здоровью человека. К примеру, множество людей живет в домах, которые были построены несколько десятков лет назад, и электропроводка помещений осталась с тех времен. Разумеется, что состояние такой электропроводки оставляет желать лучшего, и если вовремя не заменить провода может случиться возгорание, в худшем случае переросшее в пожар.

Основные причины

Возгорание электропроводки может случиться в следующих ситуациях:

  1. Короткое замыкание. В этом случае температура на поврежденном участке возрастает в несколько раз, расплавляя при этом жилы электропроводки. Случается из-за пробоя изоляционного материала (механическое повреждение, микротрещины, повышенное напряжение, старая электропроводка).
  2. Перегрузка сети по току. Характерно при подключении электрооборудования повышенной мощности, появлении больших токов утечки, увеличении температуры на отдельных участках. Эти причины также ведут к перегреву и последующему возгоранию.
  3. Часто электропроводка горит в местах соединения токоведущих проводников. В результате ослабления или окисления контакта резко увеличивается переходное сопротивление электропроводки, которое влечет за собой перегрев и последующее возгорание.

Самый распространенный случай возгорания электропроводки – неисправный или поврежденный шнур питания электроприборов. Если подобное случилось, то первым делом нужно отключить прибор от сети, накрыть место возгорания тряпкой и потушить огонь. В большинстве квартир стоят цветочные горшки, земля из которых отлично подойдет, чтобы сбить пламя.

Порядок действий при выявлении первых признаков возгорания

Если при подключении одного или нескольких приборов в сеть слышен запах горения пластмассы нужно немедленно предпринимать определенные меры, т.к. это явный признак возгорания электропроводки.

Действовать нужно следующим образом:

  1. Все ремонтные работы проводятся в обесточенном помещении, поэтому вначале необходимо выкрутить пробки.
  2. В комнате, где был слышен запах горения проводки необходимо разобрать все розетки и проверить провода и контакты. Чаще всего ослабляется контакт под прижимной шайбой, что приводит к перегреву.
  3. Если все розетки в исправном состоянии, следует заглянуть в распределительную коробку. Заметить поврежденный участок не составит труда: контакт будет почерневший, расплавлена изоляция кабеля.
  4. В случае с неисправными розетками зачищаются провода, и восстанавливаются контакты. Если возгорание произошло в распределительной коробке, то поврежденный участок лучше вырезать и на его место сделать вставку другого кабеля, имеющего такое же сечение. Соединение запрещено выполнять методом скрутки, провода необходимо спаять, затем заизолировать оголенные участки.
  5. Если обнаружится, что сгорела проводка на значительном отрезке, то придется менять полностью весь кабель.

Пожарная безопасность электропроводки с алюминиевыми жилами ниже, чем у медной проводки. Это объясняется тем, что алюминий имеет свойство окисляться на воздухе, из-за этого в месте соединения проводов повышается сопротивление, что приводит к перегреву и возгоранию. Поэтому лучше полностью .

Не обязательно прокладывать новые провода сразу во всем доме, можно делать это постепенно, совмещая с косметическим ремонтом.

Процесс этот довольно кропотливый и требует определенных знаний и умений. Если нет уверенности в собственных способностях, лучше прибегнуть к помощи профессионального электрика.

Чем можно тушить проводку под напряжением

Бывает, что когда загорелась электропроводка, рядом нет человека и оперативно сбить пламя невозможно. В этих случаях, чтобы предотвратить пожар, необходимо действовать быстро и не всегда есть возможность добежать до электрощита, чтобы обесточить дом. Возгорание на начальных стадиях можно тушить при помощи земли и песка. Но для таких экстренных случаев лучше иметь в доме специальный огнетушитель. Не все виды этого приспособления можно использовать для тушения приборов и электропроводки под напряжением. Поэтому, перед покупкой необходимо разобраться, каким огнетушителем можно тушить электропроводку.

Лучшим вариантом является углекислотный огнетушитель, который можно применять для устранения возгораний в электроустановках под напряжением до 10000 В. Огнетушащее средство имеет низкую температуру и подается под высоким давлением. За счет этого удается не только устранить возгорание, но и охладить тлеющие участки электропроводки. Основным недостатком такого приспособления является то, что пары, которые выделяются при испарении, вредят здоровью человека. Поэтому углекислотным огнетушителем запрещено тушить пожар в непроветриваемых помещениях.

Для квартир и частных домов, где напряжение в сети не превышает 380 В, хорошим вариантом будет приобретение порошкового огнетушителя, который можно использовать для тушения электроустановок под напряжением до 1000 В. Порошковое средство быстро устраняет возгорание за счет изоляции очага пламени от кислорода.

Если есть возможность отключить электричество, можно использовать водные и пенные огнетушители. В противном случае такими средствами нельзя тушить электропроводку, т.к. человека может убить током. При ликвидации возгорания необходимо соблюдать дистанцию в 1 метр.

Меры профилактики

Если при монтаже электропроводки соблюдались правила устройства электроустановок, то правильное обращение с электроприборами сводит к минимуму риск возгорания проводов. Однако в этом вопросе нельзя быть уверенным на все 100 %, и для предотвращения возможных проблем лучше соблюдать рекомендации описанные ниже.

Нельзя использовать много тройников и удлинителей, шнур от которых желательно прокладывать вдоль стен, чтобы на него не наступал человек, не ставились тяжелые предметы. Нужно знать, что максимальный ток для однофазной розетки составляет 16 А. Если превысить этот порог может не сработать токовая защита, и розетка станет опасной.

Необходимо несколько раз в год делать ревизию распределительных коробок. Проверяются контакты на прочность соединения, зачищается слой окисления, если такой образовался.

Нужно следить за состоянием розеток, периодически проверять надежность зажимных контактов. Изношенные изделия могут начать искрить, что впоследствии может стать причиной возгорания и перерасти в пожар.

За включенными нагревательными электроприборами нужно постоянно следить. При необходимости покинуть дом на длительное время можно отключать подачу электричества на электрощите.

Для предотвращения таких страшных последствий возгорания электропроводки, как пожар, необходимо установить специальные автоматические выключатели. Если есть возможность, то лучше провести отдельную линию для мощных электроприборов.

Развернуть содержание

Электротехнические причины пожаров являются одними из наиболее распространенных причин пожаров – почти каждый пятый .

Всегда ли электротехнические причины пожаров являются достаточно обоснованными?

Как показал многолетний опыт и практика исследования пожаров для выдвижения и окончательного принятия версии данной причины возникновения пожара дознавателю и следователю, порой достаточно обнаружить в месте очага пожара оплавленный электрический проводник. Зная, что короткое замыкание, обладает достаточным тепловым импульсом и способно воспламенить изоляцию токоведущих частей и горючие материалы, находящиеся вблизи с электроустановками, некоторые специалисты, считают, что правильно установили причину пожара. В дальнейшем остальные элементы и аппараты защиты электрической сети объекта пожара их не интересуют. Такой вывод о достоверности причины пожара не правилен.

Для объективного раскрытия преступлений и обоснованного определения причины пожара необходимо полное и качественное исследование всей электрической сети объекта пожара, фиксация обнаруженных в очаге фрагментов электротехнических устройств и правильное изъятие необходимых для проведения инструментальных исследований вещественных доказательств.

При расследовании пожаров с в качестве вещественных доказательств должны изыматься элементы электросети (аппараты защиты, коммутационные аппараты, отрезки кабелей и проводов с медными и алюминиевыми жилами), имеющие характерные следы воздействия дуги короткого замыкания или температурного разрушения.

Последовательность действий лиц, занимающихся дознанием пожаров, неоднократно указывалось в специальной литературе.

Считаем полезным систематизировать и вновь повторить их.

Версия возможности возникновения пожара от электроустановок должна выдвигаться и отрабатываться во всех случаях, когда на объекте пожара имелось электрооборудование. Осмотр электроустановок представляет немалую сложность, поэтому целесообразно осуществлять его с привлечением специалистов энергетиков. Причем следует иметь в виду, что этот осмотр не может ограничиваться только помещениями, в которых происходило горение, т.к. для отработки версий возможности возникновения пожара от электрооборудования необходимо знание состояния всей электрической сети, начиная от источника питания (трансформаторной подстанции) до наиболее удаленных потребителей электроэнергии, находившихся на объектах пожара.

Версии о причинах возникновения пожаров, связанных с эксплуатацией электроустановок – это наиболее широкая группа причин. Это обусловлено прежде всего энерговооруженностью на производственных предприятиях, в сельском хозяйстве и в быту, возможностью выхода из строя электротехнической продукции, а также низким качеством технического обслуживания электрохозяйства. Необходимо отметить, что причастность электрооборудования к возникновению пожаров довольно часто «устанавливается» без достаточных оснований. Это требует более глубокого и грамотного исследования всех тех явлений, предшествовавших пожару и имевших место в его процессе, которые имеют существенное значение при установлении истинной причины возникновения пожара при отработке выдвинутых версий о возможной причине пожара.

Следует иметь в виду, что практически все источники зажигания, связанные с эксплуатацией электрических установок, обладают большим запасом тепловой энергии и способны зажечь большинство горючих веществ и материалов.

К причинам пожаров электротехнического характера относятся:

  • электрическая дуга;
  • короткое замыкание;
  • перегрузка электрических цепей;
  • больше переходное сопротивление;
  • искрение;
  • перенапряжение электрической сети;
  • переход электрического тока на металлические заземленные конструкции зданий и сооружений;
  • переход электрического тока на слаботочные электрические линии (радио, телефонные и пр.);
  • тепловое воздействие электронагревательных приборов;
  • тепловое воздействие электрических ламп накаливания, их аварийный режим и проплавление колб;
  • аварийный режим работы люминесцентных светильников.

Для повышения качества осмотра электрооборудования на пожаре целесообразно более подробно рассмотреть каждую из перечисленных выше причин, имея ввиду, что появление или наличие некоторых из них предусмотрено нормальным режимом работы электроустановок. Например, электрические дуги возникают при проведении электросварочных работ; искрение происходит в коллекторных электродвигателях, магнитных пускателях и контакторах; наличие нагретых или накаленных частей имеется в нагревательных приборах и пр.

Необходимо знать, что перенапряжение электрической сети, большое переходное сопротивление и перегрузка цепи может привести к короткому замыканию, возникновению электрической дуги, и наоборот, короткое замыкание может привести к перегрузке электрической сети, к искрению, образованию электрической дуги, к переходу электрического тока на металлические заземленные конструкции и т.д. То есть, одни аварийные режимы, переходят в другие более опасные в отношении возможности возникновения пожаров.

Рассмотрим вышеперечисленные источники зажигания подробнее.

Электрическая дуга имеет очень высокую температуру (1500-4000 °С) и может воспламенить практически любой горючий материал, соприкасаясь с ним непосредственно, а также посредством лучистой теплоты. Электрическая дуга образуется в результате устойчивого электрического разряда между двумя металлическими элементами электрической установки, имеющими разные потенциалы. В электрической дуге происходит интенсивная ионизация газового промежутка, плавление и горение металла. Кроме того, происходит интенсивное разбрызгивание расплавленных частиц металла, имеющих большой запас тепловой энергии, которые попадая на горючие материалы, могут зажечь их.

Устойчивая электрическая дуга наиболее часто может возникать при коротком замыкании в газовых трубах или бронированных кабелях и значительно реже в электропроводах. При этом, по мере расплавления и сгорания токоведущей жилы электрического проводника, брони, трубы, или другой защитной оболочки, дуга может перемещаться вдоль их поверхностей в сторону источника питания, оставляя точечные или распределенные по длине проплавления. При электрической дуге по цепям протекают токи короткого запасания, Поэтому при образовании электрической дуги в аварийном режиме в электрической цепи возникают вторичные (побочные) явления, характерные для короткого замыкания. При этом нередко источники зажигания появляются не только в месте образования дуги, но и в других местах электрической цепи, но направлению к источнику питания. В случаях, не предусмотренных нормальным режимом эксплуатации электроустановок, возникновение электрической дуги чаще всего происходит при коротком замыкании.

Одним из широко известных примеров использования электрической дуги в производстве является электрическая сварка, при которой по проводникам протекают значительные токи и выделяется большое количество тепловой энергии.

Процесс электрической дуговой сварки, как правило, сопровождается возникновением:

  • нагретых до высокой температуры или даже раскаленных свариваемых, деталей, конструкций или их отдельных участков;
  • разлетом на значительные расстояния сравнительно больших по размерам частиц расплавленного металла;
  • нагревом контактных элементов и электрических проводников в местах неплотных соединений;
  • искрения в местах некачественного соединения или подсоединения электрических проводов к сварочному аппарату, свариваемым деталям и конструкциям.

Короткое замыкание

Среди причин пожаров электротехнического характера короткое замыкание является самым распространенным, хотя нередко оно может быть и следствием какой-либо другой аварийной ситуации в электрической цепи.

Короткое замыкание возникает при соединении электрических проводов с нарушенной изоляцией, соприкосновении проводов с металлическими заземленными конструкциями зданий и сооружении, попадании на оголенные провода посторонних металлических предметов, пробое обугленной или нарушенной изоляции проводов и других электроустановочных изделий. В результате короткого замыкания, из-за резкого возрастания тока в электрической цепи, значительно возрастает температура токопроводящих жил, что приводит к воспламенению изоляции электрических проводов и кабелей и чаще всего сопровождается расплавлением металла проводников.

Перегрузка электрических цепей

Перегрузкой называется такое явление, при котором в электрической сети, обмотках электрических машин, приборах и аппаратах возникают токовые нагрузки, превышающие длительно допустимые.

Наиболее частыми причинами, вызывающими перегрузку электрических цепей являются:

  • неполное или неметаллическое короткое замыкание через некоторое переходное сопротивление;
  • перенапряжение в электрической сети;
  • работа трехфазного двигателя на двух фазах вследствие обрыва третьей или срабатывания одного из предохранителей;
  • заклинивание, перегрузка механизма, приводимого электродвигателем (например, двигателя транспортерной линии);
  • неправильный выбор электродвигателя для заданного рабочего механизма (заниженная мощность по отношению к требуемой);
  • заедание вала электродвигателя вследствие недостаточности смазки, или разрушении подшипников и перекосе вала;
  • включение в электрическую сеть не предусмотренных расчетом мощных потребителей электроэнергии.

Большое переходное сопротивление

Большое переходное сопротивление – это сопротивление участка электрической цепи в месте соединения отдельных элементов (места соединения проводов, подсоединения их к электроприемникам, контактным элементам и т.п.) в которых, при неправильном их исполнении, сопротивление выше по сравнению с сопротивлением электрической цепи до этих участков и после их

Наиболее часто большие переходные сопротивления возникают в следующих случаях:

  • в местах соединения проводов между собой, когда вместо пайки, сварки, опрессовки или зажимов под болты применяются скрутки проводов с алюминиевыми и медными жилами;
  • в местах подключения проводов к рубильникам, электродвигателям и другим аппаратам без специальных зажимов и наконечников;
  • в рубильниках, магнитных пускателях, выключателях, штепсельных разъемах (розетках, вилках) на контактных элементах при снижении прилагаемых для включения усилий, недовключения, подгорания и т.п.;
  • в местах контактов. выполненных с помощью резьбовых соединений в электрооборудовании, которое в процессе работы подвержено вибрации, и особенно в случаях отсутствия приспособлений против самоотвинчивания;
  • в местах соединения проводов, выполненных с помощью пайки, но с применением при подготовке поверхностей кислот, которые практически всегда остаются в месте пайки и впоследствии вызывают усиленное окисление мест соединения или близ расположенных участков проводов.

Образование источников зажигания при возникновении больших переходных сопротивлений, как правило, возможно, в мостах появления переходных сопротивлений, описанных выше. Непосредственным источником зажигания в этом случае могут быть:

  • элементы электроустановок, нагретые до высокой температуры теплом, выделенным электрическим током в месте большого переходного сопротивления;
  • электрические искры или частицы расплавленного и накаленного металла, возникающие в месте «плохого» электрического контакта.

Большое переходное сопротивление может быть причиной возникновения короткого замыкания.

Искрение в электроустановках – это весьма распространенное явление и происходит как при нормальной работе отдельных потребителей электрической энергии, так и в аварийном режиме. Искрение образуется при контактной и дуговой электросварке, включении и выключении рубильников, магнитных пускателей, контакторов, выключателей, на кольцах и коллекторах электродвигателей при неплотном прилегании к ним щеток, и в местах некачественного соединения проводов к потребителям электрической энергии, при соприкосновении отдельных участков проводов между собой или с заземленными конструкциями и т.д. При искрении происходит образование источников зажигания, обладающих энергией и температурой достаточных для воспламенения многих горючих веществ и материалов.

Искрение в не пожароопасных и не взрывоопасных средах, а также при отсутствии в непосредственной близости горючих материалов и конструкций большой опасности не представляет.

Перенапряжение в электрической цепи

В связи с тем, что источники питания электроэнергией имеют ограниченные мощности, подключение к ним или отключение от них электропотребителей приводит к изменению напряжения в электрической сети. Чтобы компенсировать снижение напряжения, при одновременном включении большого количества потребителей, напряжение источника питания завышают. Поэтому при отключении большинства потребителей напряжение в электрической сети становится выше номинального (127, 220, 380 В). Величина перенапряжения может быть различной и особенно больших различий чаще всего достигает в сельской местности. Причиной перенапряжений в электрической сети может быть также выход из строя регулятора числа оборотов на местных электростанциях, когда, образно говоря, двигатель генератора идет в «разнос». Перенапряжение может возникать: при коротких замыканиях; при попадании «высокого» напряжения на низковольтные сети; при грозовых разрядах; электромагнитной индукции и др.

Пожарная опасность перенапряжения, в зависимости от конкретных условий, может проявляться в следующем:

  • повышении вероятности возникновения короткого замыкания;
  • увеличении токовой нагрузки на отдельных участках электрической цепи и возможности возникновения перегрузки;
  • повышении тепловыделения в электронагревательных устройствах;
  • повышении вероятности возникновения аварийных режимов в лампах накаливания;
  • повышении вероятности выхода из строя отдельных элементов бытовых электропотребителей (телевизоров, радиоприемников, блоков питания и др.), а так же промышленного электрооборудования.

Переход электрического тока на заземленные металлические конструкции

Переход электрического тока на металлические заземленные конструкции зданий и сооружений, имеющие электрическое соединение с землей (крыши, водосточные трубы, трубы системы отопления и водоснабжения, металлические балки, сетки под слоем штукатурки и т.п.), происходит в результате соприкосновения их с одним из фазных проводов, находящихся под напряжением. В случае контакта между ними возникают значительные токи уточки, которые могут привести к срабатыванию электрической защиты, если она выбрана правильно. В этом случае опасность перехода электрического тока на металлические конструкции, ограничивается местом касания провода к конструкции, где возможны значительное искрообразование и кратковременное возникновение электрической дуги, которые могут поджечь вблизи расположенные горючие материалы.

Если происходит переход электрического тока на металлические конструкции, не имеющие хорошего заземления и достаточно плотного соединения отдельных частей между собой, то на пути движения тока возникают большие переходные сопротивления, возможен периодический пробой воздушного зазора или постоянное искрение. Загорание при этом возможно как от нагрева металлических частей, так и искрения. Нагрев и искрение могут быть настолько сильны, что Отдельные участки металлических конструкций могут оплавиться. При таком явлении ток утечки может быть недостаточным для срабатывания даже правильно выбранной защиты.

Характерно, что нагрев металлических конструкций и искрение может происходить не только в том месте, где обнаружено касание электрического провода к частям здания, а совершенно на других участках, на которых нет электрических коммутаций иногда удаленных на несколько сот метров от места касания. Пожары от растекания электрического тока по металлическим конструкциям зданий характерны возможным наличием нескольких очагов. В этом случае пожар может возникнуть даже в разных зданиях.

Переход электрического тока на металлические конструкции возможен:

  • при обрыве провода воздушной линии электропередач;
  • при механическом повреждении изоляции электропроводов, проложенных по металлическим конструкциям и коммуникациям зданий;
  • при использовании металлических конструкций и коммуникаций в качестве обратного провода при проведении электросварочных работ;
  • при использовании металлических конструкций и коммуникаций здания в качестве заземления;
  • при разрушении изоляторов или повреждении изоляции проводов в металлических трубостойках на вводе в здания и др.

Переход электрического тока возможен не только на металлические конструкции здания, но и в другие электрические сети. Если этот переход произойдет в слаботочные линии, то может привести к их воспламенению и пожару. Такой переход возможен в местах совместной прокладки линии разного напряжения, при соприкосновении или пересечении, если в них будет повреждена изоляция.

Тепловое воздействие и аварийный режим работы ламп накаливания

Основными причинами возникновения пожаров от электрических ламп накаливания являются:

  • непосредственное соприкосновение горючих материалов с нагретой колбой лампы;
  • воздействие теплового излучения лампы на горючие материалы;
  • вылет раскаленных капель спирали, образовавшихся под воздействием дуги между электродами или одним из электродов и обгоревшей нитью накаливания;
  • попадание нагретых частиц спирали на горючие материалы в результате взрыва колбы лампы накаливания.

Возникновение пожаров от ламп накаливания может быть обусловлено:

  • нарушением правил эксплуатации ламп накаливания, например, использованием их в пожароопасных помещениях без защитных стеклянных колпаков;
  • несоблюдение минимально допустимых расстояний от ламп накаливания до легковоспламеняющихся и горючих материалов, использование бумажных абажуров и др.;
  • некачественным энергоснабжением (резкими колебаниями напряжения в электрической сети, что может повлечь к возникновению дуги или взрыву колбы).

Степень нагрева колб электрических ламп накаливания зависит от расстояния от нити накала до колбы и от мощности лампы. При этом лампы меньшей мощности с малым размером колб могут иметь более высокую температуру на поверхности колб, чем более мощные лампы больших размеров. У изготавливаемых промышленностью ламп накаливания мощностью от 40 до 100 Вт в условиях нормальной эксплуатации температура на поверхности колб находится в пределах 125-240 °С. Но при условии аккумуляции тепла (например, соприкосновения с какими-либо материалами) она может повышаться на несколько сот градусов и привести к воспламенению горючих материалов. Так, например, лампа накаливания мощностью 100 Вт, обернутая хлопчатобумажной тканью уже через 5 мин. может иметь температуру на поверхности колбы 350 °С и привести к загоранию ткани.

Проведенные исследования показали, что хлопок, вата и изделия, изготовленные на их основе, находящиеся на расстоянии до 30 мм от колбы лампы накаливания, способны воспламениться в течение одного часа.

Аварийный режим в лампах накаливания и как следственно разрыв колб, возникновение дуги, оплавление электродов и проплавление каплями расплавленного металла колб ламп возможен при значительном повышении напряжения в электрической сети, а также вследствие низкого качества ламп накаливания (конструктивных и технологических факторов, например плохого контакта в месте подсоединения вольфрамовой нити накала к никелевому электроду).

При разрушении колбы лампы накаливания возможно выпадение раскаленных частиц спирали и попадание их на горючие материалы. При образовании внутри колбы лампы накаливания электрической дуги попадание раскаленных частиц металла на горючие материалы возможно не только при разрушении колбы лампы, но и при проплавлении ее расплавленными частицами металла. Исследования показали, что при оплавлении никелевых электродов капли металла в 50% случаев проплавляют колбу лампы накаливания, оставляя отверстия диаметром от 1 до 3 мм. Раскаленные капли никеля при выходе из колбы лампы накаливания в атмосферу взрываются, образуя поток, состоящий примерно из 4000 частиц. Температура частиц никеля размером от 0,5 до 3 мм находится в диапазоне 1500-2200 °C, что представляет их высокую пожароопасность.

Аварийный режим работы люминесцентных светильников

Пожарная безопасность люминесцентных светильников означает практическую невозможность загорания, как самого светильника, так и окружающей его среды, что должно обеспечиваться конструкцией светильника, выбором комплектующих изделий и материалов с температурными характеристиками соответствующими тепловому режиму работы светильника. При этом характеристиками пожаробезопасности является соответствие температуры на основных элементах светового прибора допустимым значениям, как в рабочем, так и в аварийном режиме его работы.

Рассмотрим возможные причины появления больших температур на люминесцентных лампах со стандартными электромагнитными пуско-регулирующими аппаратами (ПРА). С точки зрения физического процесса получения света люминесцентные лампы более значительную часть электроэнергии превращают в видимое световое излучение, нежели лампы накаливания. Однако при определенных условиях, связанных с неисправностями ПРА люминесцентных ламп, возможен их сильный нагрев (в отдельных случаях до 190-200 °С), в результате чего происходит размягчение и вытекание заливочной массы, приводящее к возгоранию полимерных рассеивателей люминесцентного светильника.

Определенную пожарную опасность представляют стартеры, т.к. внутри некоторых из них находятся легкосгораемые материалы (бумажный конденсатор, картонные прокладки и др.).

Примером пожара от аварийной работы ПРА люминесцентного светильника является пожар, произошедший 26.03.2012 году в детском саду № 262 ОАО г. Омска. В результате аварийной работы ПРА, произошло загорание рассеивателя светового прибора, обрушение его на пол и последующее загорание напольного покрытия.

Тепловое воздействие электронагревательных приборов

Пожары от электронагревательных приборов могут возникать из-за конструктивных недостатков отдельных узлов, а так же нарушения правил эксплуатации этих приборов.

При этом непосредственными источниками зажигания могут быть:

  • короткое замыкание в этих приборах, питающих шнурах и линиях;
  • перегрузка;
  • большое переходное сопротивление;
  • искрение;
  • электрическая дуга;
  • нарушение теплового режима (вытекание жидкости, изменение условий теплообмена и т.п.)
  • работы электронагревательного прибора;
  • расположение или попадание горючих веществ в зону сильного теплового воздействия.

К электронагревательным приборам относят:

  • нагреватели с трубчатыми нагревательными элементами;
  • композиционные электрообогреватели;
  • бытовые гибкие нагреватели для непосредственного обогрева человека;
  • электроприборы с толстопленочными нагревательными элементами;
  • бетонные и керамические электрообогреваемые полы и панели;
  • электрокамины, конвекторы, тепловентиляторы, радиаторы;
  • электропечи в банях (саунах);
  • электротостеры, ростеры, грили, шашлычницы;
  • электроплиты, электрочайники, кипятильники;
  • утюги;
  • микроволновые печи;
  • электронагревательный инструмент.

Общеизвестны примеры разрушения ТЭНов электрических кипятильников включенных без воды. Во включенном состоянии, но без погружения в воду, электрический кипятильник в течение нескольких минут может раскалиться докрасна и температура оболочки ТЭНа при этом достигает 700-800 °С и выше. Расплавленные капли разрушившейся оболочки ТЭНа могут привести к загоранию горючих материалов.

Примером пожара по этой причине может служить пожар, произошедший 11 сентября 2013 года в лаборантской комнате кабинета физики СОШ № 96 САО г. Омска. В результате разрушения оболочки ТЭНа бытового электрокипятильника произошел разлет расплавленных капель металла, вызвавший , в дальнейшем перешедшее в загорание окружающих учебных пособий.

Читайте дополнительный познавательный материал

Страница 1 из 2

Какие неисправности электрической проводки могут стать причиной возгорания здания?

Перевод: И.В. Луговская

Источник: http://www.interfire.org/features/electric_wiring_faults.asp

Общее понятие

Значительная часть возгораний зданий связана с неисправностями электропроводок или проводящих устройств. Удивительно, но режимы, в которых электрические неисправности могут стать причинами возгораний, не были изучены. Этот документ рассматривает известную, ранее опубликованную информацию по этой теме, а также указывает на основные моменты дальнейших исследований. Основной упор делается исключительно на однофазные, 120/240В системы распределения . Необходимо также отметить, что систематические исследования этой темы чрезмерно недостаточны, а большая часть существующих исследований, доступна только на японском языке.

Предпосылки

Последние статистические данные Национальной ассоциации противопожарной защиты , за 1993 – 1997 гг., гласят, что 41200 бытовых пожаров в зданиях за год, относятся к так называемым «электрически распространяемым».

Эти электрические возгорания насчитывают 336 смертей, 1446 травм гражданских лиц, и 643 млн. $ прямого ущерба имуществу в год.

41200 пожаров зданий составляют 9,7% от общего числа бытовых пожаров, электрические возгорания занимают 5 место среди 12 основных причин пожаров.

643 млн. $ прямого ущерба имуществу составляет 14,4% от общего числа повреждений вследствие пожаров, разместив электрические возгорание на второе место по причинению ущерба от пожаров (после поджога или подозрительных причин).

Опубликованные ранее FEMA статистические данные за 1985 – 1994 гг. были очень похожи: электрические возгорания занимали пятое место среди причин пожаров, четвертое место, среди причин пожаров со смертельным исходом, и второе место среди причин пожара по ущербу имуществу. Причины электрические возгораний , перечислены в таблице 1.

Таблица 1. Причины пожаров жилых помещений в США из-за электрических возгораний

Причины пожара

Процентное соотношение (%)

Стационарная проводка

34.7

Шнуры и вилки

17.2

Осветительные приспособления

12.4

Выключатели и розетки

11.4

Светильники и лампы накаливания

Предохранители, выключатели

Измерительные приборы

Трансформаторы

Неклассифицированное или неизвестное электрораспределительное оборудование

Большие потери, нанесенные возгоранием электрических приборов, не означают, что электрические системы являются ненадежными. В США около 270 миллионов человек занимают около 100 млн. единиц жилья, в среднем 5.4 комнат на дом . Это означает, что в США проживает 2,7 человека в одной единице жилья, или же имеется 2 комнаты на одного человека. Если есть по 4 розетки в комнате, то количество розеток составляет 4*2*270*106 = 2,16 миллиарда. Следует вычесть определенный процент неиспользуемых розеток. Можно предположить, что половина розеток имеют подключенные устройства. Из оставшейся половины розеток, будем считать, что половина из них имеет последовательное соединение к другой розетке, а другой выход используется. Таким образом, реальное количество розеток, с протекающим в них током, оценивается как ¾ = 2,16 млрд., или 1620000000. Статистические данные NFPA показывают, что 4700 пожаров приходится на "выключатели и розетки", но CPSC далее опровергает статистику для выключателей, указывая, что они составляют 30% на рисунке выше. Не принимая во внимание пожары, произошедшие из-за неисправностей переключателей, 3290 пожаров за год обусловлены неисправностями розеток. Частота повреждений оценивается как 3290 / 1,62 "109, или 2"10-6 / в год. Очень низкий процент повреждений показывает, что электрический розетки обладают высокой надежностью. Проблема заключается не в высокой вероятности повреждений, кол-ва устройств, за год.

Вместо этого, вопрос состоит в том, что электрическая сеть включает в себя необычайно большое количество устройств, которые распределены повсеместно. Каждое устройство является источником энергии, и каждый из них потенциально может дать сбой и привести к пожару.

Виды возгораний

Учитывая то, что такие причины пожаров, как электрические возгорания занимают второе место по количеству нанесенного ущерба (в долларах США) среди остальных причин пожаров, можно сделать вывод, что был выполнен большой объем исследований, по изучению неправильной работы механизмов, приводящих к возникновению воспламенений. Это доказывает по сути, что, в лучшем случае, исследования были фрагментарными. К рассмотрению повреждений можно подойти по-разному:

  • определение срабатывания или бездействия, которые привели к повреждению
  • классификации повреждений неисправного устройства или его части
  • изучение основ физики повреждений.

Такие методы, играют важную роль в реконструкции несчастных случаев.

Изучение неисправностей механизмов показывает, что существует всего несколько основных способов, при которых электрическая изоляция или горючие вещества, расположенные близко к электрическим компонентам проводки, могут воспламениться, хотя существуют различные аспекты для каждого из них:

  • дуга
  • чрезмерный омический нагрев, без искрения
  • внешний нагрев

Некоторые типы возгораний включают сочетание механизмов, поэтому они не должны рассматриваться как взаимоисключающие причины пожара.

Образование дуги

Графически изображено, как дуга может возникнуть или последовательно (рис. 1), или же параллельно (рис. 2)

Рисунок 1. Последовательная дуга Рисунок 2. Параллельная дуга

Некоторые авторы считают короткозамкнутую дугу – третьей формой дуги, её появление возможно, когда схема содержит короткозамкнутую нейтраль. Топологический механизм такой дуги идентичен параллельной, так как нагрузка не последовательна дуге. Различие между двумя основными формами дуг имеет важное значение. В случае последовательной дуги – при возникновение дуги, уменьшается ток в цепи. Таким образом, устройства защиты перегрузки по току не сработают.

Причин возникновения дуги может быть много, но основными из них являются:

  • обугливание изоляции (дуга тонарма)
  • внешняя ионизация воздуха
  • короткое замыкание.

Обугливание изоляции

В цепи переменного тока, напряжением 120В легко образуется устойчивое горение дуги, если в цепи будут находиться обугленные токопроводящие элементы. Это явление иногда называют ещё ‘ arcing - across - char ’. Этот механизм известен в области электротехники уже в течение очень долгого времени . То, как обугленные токопроводящие элементы появляются в изоляционном материале, не является тривиальным вопросом. Существуют не мало способов получения таких элементов. Самый простой способ, используемый в некоторых стандартных методиках испытаний , заключается в создании дуги непосредственно на поверхности изоляции, например, путем размещения двух электродов на изоляционном материале и применения высокого напряжения между ними. Другой механизм предполагает комбинированное воздействие влаги и загрязняющих веществ на поверхность. Этот процесс иногда называют «мокрый трекинг» (wet tracking ) и он являлся особой проблемой для воздушной проводки с полиамидной изоляцией . Совокупное воздействие влаги и загрязняющих веществ вызывают на поверхности изолятора токи утечки, которые со временем могут привести к образованию обугленных треков .

Изоляционные материалы различаются по своей восприимчивости к дуге трекинга. Большая часть проводки напряжением 120/240В изолированы поливинилхлоридом (ПВХ), но, к сожалению, ПВХ является одним из менее удовлетворительных полимеров по отношению к дуге трекинга . Ното и Кавамура сообщили об обширных мокрых трекинг - экспериментов с ПВХ изоляцией. Использование стандарта Международной электротехнической комиссии (IEC ) 60112 , они зафиксировали ряд типовых образцов, которые привели к воспламенению кабеля.

Когда ПВХ подвергается воздействию температуры 200 - 300С°, образец является полупроводником. Не удивительно, что это может привести к утечке тока и искрению. Однако Нагата и Юкои обнаружили, что, если абсолютно новый ПВХ нагревается до достаточно низкой температуры 160C°, то приложение напряжения величиной 100В через 1 мм толщины изолятора достаточно, чтобы вызвать воспламенение изоляции. Кроме того, если изоляция была ранее предварительно нагрета до 200 - 300C°, тогда возгорание происходит при умеренных температурах. В течение исследования испытательное напряжение варьировалось – от комнатной температуры до 40C° – этого было достаточно для появления возгорания (рис. 3).

Рисунок 3. Влияние температуры предварительного нагрева и температуры испытания на воспламенение ПВХ изоляции проводов при воздействии переменного тока напряжением до 100В через 1 мм толщины изоляции

Хагимото вместе с соавт. провели лабораторные исследования параллельной дуги при неисправностях электрических шнуров. Они определили, что этот процесс обычно происходит в нерегулярно повторяющихся режимах работы. Исследователи выявили следующую последовательность шагов:

  • начальный ток возникает из-за обугливания слоя изоляции кабеля
  • электрический ток увеличивается, что приводит к возникновению местной дуги
  • искрение вызывает плавление металла и высвобождение расплавленных частиц, т.к. расплавленные частицы были высвобождены, ток начинает падать
  • продолжительный ток через обугленные частицы материала, в конечном итоге, приводит опять к возникновению значительного электрического тока.

Этот процесс повторяется до бесконечности. Кроме того, авторы измерили ток в процессе, и обнаружили пики до 250А, но такие пики были редки, а сигнал амперметра обычно показывал пики не более 50А. Следовательно, длительное время может потребоваться для включения выключателя. (Обратите внимание, конечно, что фактические текущие значения будут зависеть от сопротивления конкретной схеме испытания).

Внешняя ионизация воздуха

Внутренняя электрическая прочность воздуха высокая (около 3 МВ м-1, для всех, кроме очень маленьких зон), но пробой может произойти при гораздо более низких значениях, если воздушное пространство ионизировать тем или иным способом. Если происходит серьезная неисправность с появлением дуги в распределительном устройстве, выбрасывается большое количество ионизированных газов. Они могут перемещаться на определенном расстоянии, и если они соприкасаются с участками новой цепи, они могут легко привести к поломке и образованию новых дуг в других местах . Месина зарегистрировала в лабораторных условиях, что снижение пробивной силы воздуха происходит из-за наличия пламени . Опыты показали, что электрическая прочность воздуха падает до приблизительно 0,11 МВ м-1 в огне. Однако, исследование Месины, охватывали условия только при напряжении 1600В и выше.

Считается, что дугообразование, при появлении возгораний, является наиболее распространенной причиной пожара, которые могут возникнуть в месте действия огне . Оно может включать в себя либо обугливание изоляции, либо внешнюю ионизацию воздуха, или оба условия сразу. Но в случае схем, напряжением 120В, существуют лишь несколько ограниченных эмпирических исследований, по которым нет общих рекомендаций.

25-04-2013, 18:24 |

В частной мастерской по реставрации старых автомобилей, владельцем которой является очень хороший человек, искренне ему сочувствую, произошло весьма неприятное событие: пожар. Владелец строил эту мастерскую сам. Пожар возник после четырех лет эксплуатации мастерской по назначению: слесарные, сварочные, сборочные и другие работы. Все работы производились только на первом этаже здания. Потребители электроэнергии: два электрокотла на 3 и 5 кВт, сварочный аппарат, болгарка, сверлильный станок, наждак, компрессор, скважинный насос, освещение. На втором этаже располагались вспомогательные и административное помещения, а также вводной электрощит. Потребители - обычные бытовые приборы: музыкальный центр, телевизор, чайник и освещение.

На фото здание мастерской до пожара.

Из рассказа хозяина мастерской: - «Обычно были включены все потребители одновременно…»

В тот день производились обычные для мастерской работы электроинструментом: болгаркой и перфоратором. В какой-то момент пропало напряжение. Осмотр автоматических выключателей в этажном щите первого этажа показал, что они включены, из чего персоналом был сделан вывод, что отключили электричество. Прошло полчаса, когда работники мастерской почувствовали запах гари. Владелец мастерской поднялся на второй этаж и только тогда понял, что случился пожар. Попытка потушить огонь огнетушителями результата не дала: огнетушители оказались неисправными, с истекшим сроком годности. В одном повезло: пожарные приехали вовремя, и здание не выгорело дотла. Так здание стало выглядеть после пожара.

Электроснабжение здания осуществлялось по одной фазе, ответвлением от воздушной линии электропередачи кабелем СИП 2х16, который входил в здание через отверстие в стене, и был подключен к вводному автоматическому выключателю в электрощите. Вот оно, первое нарушение .

На фото - то, что раньше было электрощитом

и установленными в нем аппаратами защиты. Нажмите на картинку, чтобы увеличить.

На фото видно явное несоответствие номинальных токов автоматических выключателей допустимым токам для защищаемых кабелей. Это основная ошибка всех электриков - любителей, которая может привести к столь печальным последствиям. Применены автоматические выключатели неизвестных производителей. Дифференциальная защита отсутствует. Кроме того мы видим, что вводной автоматический выключатель трехполюсный, имеет характеристику D, а не С, из чего, казалось бы уже можно сделать вывод о квалификации электрика, собиравшего электрощит. Но подождем, посмотрим, что было дальше. Вводной автоматический выключатель на фото изображен в выключенном положении. Нет, он не сработал. Не мог он сработать: номинальный ток 80 А. Его в процессе ликвидации пожара выключил владелец мастерской.
Внутренняя электропроводка в здании была выполнена следующим образом. От вводного электрощита были сделаны две отходящие линии кабелем КГ 2х6 к этажным щиткам и защищены автоматическими выключателями на 40 и 50 А, это много. Они ничего не могли защитить, работали, как рубильники. От этажных щитков отходящие линии кабелями 3х1,5 и 3х2,5 на освещение и розетки соответственно, распайка в коробках была выполнена простой скруткой. Обратите внимание: использовался провод ! Проводка была выполнена скрытой, в металлорукаве, и была проложена в пустотах сгораемых строительных конструкций, что противоречит сразу нескольким пунктам .

Если внимательно рассмотреть фото электрощита, видно еще одно нарушение правил: многопроволочные жилы гибких кабелей, присоединенных к аппаратам защиты и шине, не опрессованы наконечниками.
Что же все-таки стало причиной пожара? При тщательном осмотре того, что осталось от электропроводки, вот что было обнаружено.

На фото мы видим, что кабеля в сгоревшем металлорукаве нет. Сгорел полностью. Он горел именно тогда, когда персонал мастерской предположил, что отключили электричество. Сидели люди и отдыхали, ждали, когда включат свет, не подозревая, что над головой - пожар.
Дальнейший «разбор полетов» показал следующее. Напряжение на вводе было всегда ниже 220 вольт.

Из рассказа хозяина мастерской: - «Иногда падения до 160 В, а норма 190 - 200. Очень редко, летом бывало подбиралось к 215 В. Я установил стабилизаторы. По одному стабу на автоматику каждого котла. На освещение по стабу на этаж. На розетки на первом этаже 3 кВт ный, одна линия, вторая линия без стаба. И еще один стаб на 8 кВт запитан отдельным кабелем от ввода - медь 10 кв.мм. на отдельную розетку на первом этаже. Когда после монтажа проводки её протестили несколько дней. Электрик ходил, что - то мерял. Сказал,что все в норме. Потом, когда начали эксплуатировать помещение, выяснилось, что в сети напряжение очень низкое. Наждак крутится медленно, компрессор запускается с трудом, болгарка работает на низких оборотах и т. д. Решил установить стабилизаторы. После установки стабилизаторов перестали справляться автоматы. Их постоянно выбивало. Пошел консультироваться к электрикам. При чем к разным. Начались версии разные. "Все плохо, надо переделывать!", "На вводе тонкие провода", "Надо ставить УЗО", "Сделай обтяжку концов проводов наконечниками", и тому подобное. В конце концов "Ставь стаб! Решает все проблемы!" Но ни один не сказал, что при включении стабилизатора в сети увеличивается сила тока. И то, что увеличится нагрузка на сеть, тоже никто не сказал. Про автоматы тем более. Более того, до сих пор приходится доказывать многим, что при падении напряжения, сила тока увеличивается. Электрикам! На пальцах, с формулами. И все равно, многие не понимают. В конце концов, не услышав какого то вразумительного ответа, поменял автоматы на более мощные…»

Вообще - то согласно закону Ома при снижении напряжения сила тока уменьшается. Владелец мастерской не электрик, простим ему его заблуждение. Его ошибкой была установка стабилизаторов. Чтоб сохранить мощность стабилизатор увеличивает напряжение на выходе за счет увеличения тока в первичной цепи. Стабилизатор из ниоткуда взять и добавить напряжение не может. Во сколько раз упало напряжение, во столько же раз увеличится ток. Стали отключаться автоматы. Поменяли автоматы. А кабель остался тот же. Ток увеличился, кабель загорелся, автоматы не сработали.
Вот и вся причина пожара. Электрик, если и виноват то в том, что выполнил электропроводку с немыслимым количеством нарушений. Виноват, скорее, поставщик некачественных услуг - электроснабжающая организация. Ну и владелец мастерской, конечно.

P. S.
Хозяин мастерской руки не опустил, восстанавливает, ее. Снимаю шляпу перед его целеустремленностью и оптимизмом. Теперь он заказал проект электроснабжения, сделал трехфазный ввод. Правда, в соответствии с тех. условиями, присоединение вот такое.

Какие-то странные тех. условия. Но это уже совсем другая тема.

Монтаж внутренней проводки в этот раз будут выполнять квалифицированные электрики. Мастерская пока окончательно не отремонтирована, но реконструирован второй этаж, и внешне здание выглядит даже лучше, чем до пожара. Но какой ценой!


Место события и имя хозяина мастерской по его просьбе не называю. Пожелаем ему удачи!



Новое на сайте

>

Самое популярное