Гэр Усан хангамж Нарийн төвөгтэй функцийн деривативыг хэрхэн авах вэ. Нарийн төвөгтэй деривативууд

Нарийн төвөгтэй функцийн деривативыг хэрхэн авах вэ. Нарийн төвөгтэй деривативууд

Нарийн төвөгтэй деривативууд. Логарифмын дериватив.
Хүч-экспоненциал функцийн дериватив

Бид ялгах техникээ үргэлжлүүлэн сайжруулсаар байна. Энэ хичээлээр бид авч үзсэн материалаа нэгтгэж, илүү төвөгтэй деривативуудыг авч үзэхээс гадна дериватив, ялангуяа логарифмын дериватив олох шинэ арга техник, заль мэхтэй танилцах болно.

Бэлтгэл багатай уншигчид энэ нийтлэлд хандаарай Деривативыг хэрхэн олох вэ? Шийдлийн жишээ, энэ нь танд ур чадвараа бараг эхнээс нь сайжруулах боломжийг олгоно. Дараа нь та хуудсыг сайтар судлах хэрэгтэй Нарийн төвөгтэй функцийн дериватив, ойлгож, шийдвэрлэх Бүгдминий өгсөн жишээнүүд. Энэ хичээллогикийн хувьд гурав дахь нь бөгөөд үүнийг эзэмшсэний дараа та нэлээд төвөгтэй функцуудыг итгэлтэйгээр ялгах болно. “Өөр хаана байна? Тийм ээ, хангалттай! туршилтуудпрактикт байнга тулгардаг.

Дахин давтахаас эхэлцгээе. Хичээл дээр Нарийн төвөгтэй функцийн деривативБид нарийвчилсан тайлбар бүхий хэд хэдэн жишээг авч үзсэн. Дифференциал тооцоолол болон математикийн шинжилгээний бусад салбарыг судлах явцад та маш олон удаа ялгах шаардлагатай бөгөөд жишээг нарийвчлан тайлбарлах нь үргэлж тохиромжтой биш (мөн үргэлж шаардлагатай биш). Тиймээс бид деривативыг амаар олох дасгал хийх болно. Үүнд хамгийн тохиромжтой "нэр дэвшигчид" нь хамгийн энгийн нарийн төвөгтэй функцүүдийн деривативууд юм, жишээлбэл:

Ялгах дүрмийн дагуу нарийн төвөгтэй функц :

Ирээдүйд бусад матан сэдвүүдийг судлахдаа ийм нарийвчилсан бүртгэл ихэвчлэн шаардлагагүй байдаг тул оюутан ийм деривативыг автомат жолоодлого дээр хэрхэн олохыг мэддэг гэж үздэг. Шөнийн 3 цагт нэг байсан гэж төсөөлөөд үз дээ утасны дуудлага, мөн аятайхан хоолой асуув: "Хоёр X-ийн шүргэгчийн дериватив нь юу вэ?" Үүний дараа бараг агшин зуур эелдэг хариу үйлдэл үзүүлэх ёстой. .

Эхний жишээ нь нэн даруй зориулагдсан болно бие даасан шийдвэр.

Жишээ 1

Дараах деривативуудыг нэг үйлдлээр амаар олоорой, жишээлбэл: . Даалгавраа дуусгахын тулд та зөвхөн ашиглах хэрэгтэй энгийн функцүүдийн деривативын хүснэгт(хэрэв та үүнийг хараахан санахгүй байгаа бол). Хэрэв танд ямар нэгэн бэрхшээл тулгарвал би хичээлээ дахин уншихыг зөвлөж байна Нарийн төвөгтэй функцийн дериватив.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Хичээлийн төгсгөлд хариултууд

Нарийн төвөгтэй деривативууд

Урьдчилсан артиллерийн бэлтгэл хийсний дараа 3-4-5 үүрний функц бүхий жишээнүүд нь аймшигтай биш байх болно. Дараах хоёр жишээ зарим хүнд төвөгтэй мэт санагдаж магадгүй, гэхдээ хэрэв та тэдгээрийг ойлговол (хэн нэгэн нь зовох болно) бараг бүх зүйл дифференциал тооцооЭнэ нь хүүхдийн тоглоом шиг санагдах болно.

Жишээ 2

Функцийн деривативыг ол

Өмнө дурьдсанчлан, нарийн төвөгтэй функцийн деривативыг олохдоо юуны түрүүнд шаардлагатай байдаг ЗөвХөрөнгө оруулалтаа ОЙЛГООРОЙ. Эргэлзээтэй байгаа тохиолдолд би танд хэрэгтэй аргыг сануулж байна: бид жишээ нь "x"-ийн туршилтын утгыг авч, (сэтгэцийн эсвэл ноорог хэлбэрээр) орлуулахыг оролддог. өгөгдсөн үнэ цэнэ"аймшигтай илэрхийлэл" болж хувирав.

1) Эхлээд бид илэрхийллийг тооцоолох хэрэгтэй бөгөөд энэ нь нийлбэр нь хамгийн гүн шигтгээ гэсэн үг юм.

2) Дараа нь та логарифмыг тооцоолох хэрэгтэй:

4) Дараа нь косинусыг куб болгоно:

5) Тав дахь шатанд ялгаа:

6) Эцэст нь, хамгийн гадна талын функц нь квадрат язгуур юм:

Нарийн төвөгтэй функцийг ялгах томъёо хамгийн гадна талын функцээс хамгийн дотоод хүртэл урвуу дарааллаар хэрэгжинэ. Бид шийднэ:

Ямар ч алдаа байхгүй юм шиг байна ...

(1) Квадрат язгуурын деривативыг ав.

(2) Бид дүрмийг ашиглан ялгааны деривативыг авдаг

(3) Гурав дахины дериватив нь тэг байна. Хоёр дахь гишүүнд бид градусын деривативыг (шоо) авна.

(4) Косинусын деривативыг ав.

(5) Логарифмын деривативыг ав.

(6) Эцэст нь бид хамгийн гүн шингээлтийн деривативыг авдаг.

Энэ нь хэтэрхий хэцүү мэт санагдаж болох ч энэ нь хамгийн харгис жишээ биш юм. Жишээлбэл, Кузнецовын цуглуулгыг авбал дүн шинжилгээ хийсэн деривативын бүх гоо үзэсгэлэн, энгийн байдлыг үнэлэх болно. Оюутан нийлмэл функцийн деривативыг хэрхэн олохыг ойлгож байна уу, эсвэл ойлгохгүй байна уу гэдгийг шалгахын тулд шалгалтанд ижил төстэй зүйл өгөх дуртай болохыг би анзаарсан.

Дараах жишээ нь та өөрөө шийдэхэд зориулагдсан болно.

Жишээ 3

Функцийн деривативыг ол

Зөвлөгөө: Эхлээд бид шугаман байдлын дүрэм болон бүтээгдэхүүнийг ялгах дүрмийг хэрэгжүүлнэ

Хичээлийн төгсгөлд бүрэн шийдэл, хариулт.

Илүү жижиг, илүү сайхан зүйл рүү шилжих цаг болжээ.
Хоёр биш, гурван функцийн үржвэрийг жишээгээр харуулах нь ердийн зүйл биш юм. Гурван хүчин зүйлийн үржвэрийн деривативыг хэрхэн олох вэ?

Жишээ 4

Функцийн деривативыг ол

Эхлээд бид гурван функцийн үржвэрийг хоёр функцийн үржвэр болгон хувиргах боломжтой юу? Жишээлбэл, хэрэв бид үржвэрт хоёр олон гишүүнтэй байсан бол хаалтыг нээж болно. Гэхдээ авч үзэж буй жишээн дээр бүх функцүүд өөр өөр байдаг: градус, экспонент, логарифм.

Ийм тохиолдолд зайлшгүй шаардлагатай дараалсанбүтээгдэхүүнийг ялгах дүрмийг хэрэглэнэ хоёр удаа

Энэ заль мэх нь "y" -ээр бид хоёр функцийн үржвэрийг тэмдэглэдэг: "ve" -ээр бид логарифмыг тэмдэглэдэг. Яагаад үүнийг хийж болох вэ? Үнэхээр тийм үү – энэ нь хоёр хүчин зүйлийн үр дүн биш бөгөөд дүрэм ажиллахгүй байна уу? Ямар ч төвөгтэй зүйл байхгүй:

Одоо энэ дүрмийг хоёр дахь удаагаа хэрэглэх үлдлээ хаалтанд:

Та мөн мушгиж, хаалтанд ямар нэгэн зүйл хийж болно, гэхдээ энэ тохиолдолд хариултыг яг энэ хэлбэрээр үлдээх нь дээр - шалгахад хялбар байх болно.

Үзсэн жишээг хоёр дахь аргаар шийдэж болно.

Хоёр шийдэл нь туйлын тэнцүү юм.

Жишээ 5

Функцийн деривативыг ол

Энэ нь бие даасан шийдлийн жишээ бөгөөд үүнийг эхний аргыг ашиглан шийддэг.

Бутархайтай ижил төстэй жишээг авч үзье.

Жишээ 6

Функцийн деривативыг ол

Та эндээс хэд хэдэн аргаар явж болно:

Эсвэл иймэрхүү:

Гэхдээ эхлээд хуваалтыг ялгах дүрмийг ашиглавал шийдэл илүү нягт бичигдэх болно , бүхэл тоологчийг авч үзвэл:

Зарчмын хувьд жишээ нь шийдэгдсэн, хэрэв байгаагаар нь үлдээвэл алдаа гарахгүй. Гэхдээ хэрэв танд цаг байгаа бол хариултыг хялбарчлах боломжтой эсэхийг шалгахын тулд ноорог шалгаж үзэхийг зөвлөж байна уу? Тоолуурын илэрхийллийг багасгая Ерөнхий хуваарьТэгээд Гурван давхар фракцаас салцгаая:

Нэмэлт хялбаршуулах сул тал нь деривативыг олохдоо бус харин сургуулийн өмнөх өөрчлөлтийн үед алдаа гаргах эрсдэлтэй байдаг. Нөгөөтэйгүүр, багш нар даалгавраас татгалзаж, деривативыг "санаахыг" хүсдэг.

Өөрөө шийдэх энгийн жишээ:

Жишээ 7

Функцийн деривативыг ол

Бид дериватив олох аргуудыг үргэлжлүүлэн эзэмшсээр байгаа бөгөөд одоо "аймшигтай" логарифмыг ялгахын тулд санал болгож буй ердийн тохиолдлыг авч үзэх болно.

Жишээ 8

Функцийн деривативыг ол

Энд та нарийн төвөгтэй функцийг ялгах дүрмийг ашиглан урт замыг туулж болно.

Гэхдээ хамгийн эхний алхам нь таныг шууд л цөхрөлд автуулдаг - та бутархай, дараа нь бутархайгаас тааламжгүй деривативыг авах хэрэгтэй.

Тийм ч учраас өмнө"нарийн төвөгтэй" логарифмын деривативыг хэрхэн яаж авах вэ, үүнийг эхлээд сургуулийн алдартай шинж чанаруудыг ашиглан хялбаршуулсан болно.



! Хэрэв танд дасгалын дэвтэр байгаа бол эдгээр томъёог шууд хуулж ав. Хэрэв танд дэвтэр байхгүй бол тэдгээрийг цаасан дээр хуулж ав, учир нь хичээлийн үлдсэн жишээнүүд эдгээр томьёог тойрон эргэлдэх болно.

Шийдлийг өөрөө дараах байдлаар бичиж болно.

Функцийг өөрчилье:

Деривативыг олох нь:

Функцийг урьдчилан хөрвүүлэх нь шийдлийг маш хялбаршуулсан. Тиймээс ижил төстэй логарифмыг ялгахын тулд санал болгож байгаа бол үүнийг "задлах" нь үргэлж тохиромжтой байдаг.

Одоо та өөрөө шийдэх хэд хэдэн энгийн жишээ байна:

Жишээ 9

Функцийн деривативыг ол

Жишээ 10

Функцийн деривативыг ол

Бүх өөрчлөлтүүд болон хариултууд хичээлийн төгсгөлд байна.

Логарифмын дериватив

Хэрэв логарифмын дериватив нь ийм сайхан хөгжим юм бол асуулт гарч ирнэ: зарим тохиолдолд логарифмыг зохиомлоор зохион байгуулах боломжтой юу? Чадах! Тэгээд бүр шаардлагатай.

Жишээ 11

Функцийн деривативыг ол

Саяхан бид ижил төстэй жишээнүүдийг харлаа. Юу хийх вэ? Та хуваалтыг ялгах дүрмийг дараалан хэрэглэж болно, дараа нь бүтээгдэхүүнийг ялгах дүрмийг хэрэглэж болно. Энэ аргын сул тал нь та гурван давхар том хэсэгтэй болж, үүнийг огтхон ч шийдвэрлэхийг хүсэхгүй байгаа явдал юм.

Гэхдээ онол, практикт логарифмын дериватив гэх гайхалтай зүйл байдаг. Логарифмуудыг хоёр талд нь "өлгөх" замаар зохиомлоор зохион байгуулж болно.

Одоо та баруун талын логарифмыг аль болох "задлах" хэрэгтэй (таны нүдний өмнө томьёо уу?). Би энэ үйл явцыг нарийвчлан тайлбарлах болно:

Ялгахаас эхэлцгээе.
Бид хоёр хэсгийг үндсэн хэсэгт дүгнэж байна:

Баруун талын дериватив нь маш энгийн бөгөөд би энэ талаар тайлбар хийхгүй, учир нь та энэ текстийг уншиж байгаа бол үүнийг өөртөө итгэлтэйгээр даван туулах хэрэгтэй.

Зүүн тал нь яах вэ?

Зүүн талд нь бид байна нарийн төвөгтэй функц. "Яагаад логарифмын доор нэг "Y" үсэг байгаа юм бэ?" Гэсэн асуултыг би таамаглаж байна.

Үнэн хэрэгтээ энэ "нэг үсэгтэй тоглоом" - ӨӨРӨӨ ФУНКЦ ҮҮ(хэрэв энэ нь тийм ч тодорхой биш бол далд хэлбэрээр заасан функцийн дериватив өгүүллийг үзнэ үү). Тиймээс логарифм нь гадаад функц бөгөөд “y” нь мөн дотоод функц. Мөн бид нарийн төвөгтэй функцийг ялгах дүрмийг ашигладаг :

Зүүн талд нь ид шид мэт шидэт саваабидэнд дериватив бий. Дараа нь пропорциональ дүрмийн дагуу бид "y" -ийг зүүн талын хуваагчаас баруун талын дээд талд шилжүүлнэ.

Одоо бид ялгах явцад ямар төрлийн "тоглогч" функцийн талаар ярилцсанаа санацгаая? Нөхцөл байдлыг харцгаая:

Эцсийн хариулт:

Жишээ 12

Функцийн деривативыг ол

Энэ бол та өөрөө шийдэх жишээ юм. Загварын жишээ энэ төрлийнхичээлийн төгсгөлд.

Логарифмын деривативыг ашиглан №4-7 жишээнүүдийн аль нэгийг нь шийдэх боломжтой байсан, өөр нэг зүйл бол тэнд байгаа функцууд илүү энгийн, магадгүй логарифмын деривативыг ашиглах нь тийм ч үндэслэлгүй юм.

Хүч-экспоненциал функцийн дериватив

Бид энэ функцийг хараахан авч үзээгүй байна. Чадлын экспоненциал функц нь түүнд зориулагдсан функц юм зэрэг ба суурь нь "x" -ээс хамаарна.. Аливаа сурах бичиг, лекц дээр танд өгөх сонгодог жишээ:

Хүч-экпоненциал функцийн деривативыг хэрхэн олох вэ?

Энэ нь саяхан хэлэлцсэн техникийг ашиглах шаардлагатай - логарифмын дериватив. Бид хоёр талдаа логарифмуудыг өлгөдөг.

Дүрмээр бол баруун талд градусыг логарифмын доороос авна.

Үүний үр дүнд баруун талд бид хоёр функцийн үржвэртэй байгаа бөгөөд үүнийг стандарт томъёоны дагуу ялгах болно. .

Бид үүнийг хийх деривативыг олж, бид хоёр хэсгийг цус харвах дор хавсаргана.

Цаашдын үйлдлүүд нь энгийн:

Эцэст нь:

Хэрэв ямар нэгэн хөрвүүлэлт бүрэн тодорхойгүй байвал Жишээ №11-ийн тайлбарыг анхааралтай уншина уу.

IN практик даалгаварХүчин чадлын экспоненциал функц нь лекц дээр хэлэлцсэн жишээнээс илүү төвөгтэй байх болно.

Жишээ 13

Функцийн деривативыг ол

Бид логарифмын деривативыг ашигладаг.

Баруун талд нь тогтмол ба хоёр хүчин зүйлийн үржвэр байдаг - "x" ба "логарифм x" (өөр логарифм логарифмын доор байрладаг). Ялгахдаа, бидний санаж байгаагаар тогтмолыг үүсмэл тэмдгээс нэн даруй шилжүүлэх нь дээр бөгөөд ингэснээр саад болохгүй; Мэдээжийн хэрэг, бид мэддэг дүрмийг хэрэгжүүлдэг :


Таны харж байгаагаар логарифмын деривативыг ашиглах алгоритм нь ямар нэгэн тусгай заль мэх, заль мэхийг агуулаагүй бөгөөд хүчирхэг экспоненциал функцийн деривативыг олох нь ихэвчлэн "тарчлах" -тай холбоогүй юм.

Мөн нийлмэл функцийн деривативын тухай теорем, томъёолол нь дараах байдалтай байна.

1) $u=\varphi (x)$ функц нь хэзээ нэгэн цагт $x_0$ дериватив $u_(x)"=\varphi"(x_0)$, 2) $y=f(u)$ функцтэй байг. харгалзах цэг дээр $u_0=\varphi (x_0)$ дериватив $y_(u)"=f"(u)$ байна. Дараа нь дурдсан цэг дэх $y=f\left(\varphi (x) \right)$ нийлмэл функц нь мөн $f(u)$ ба $\varphi ( функцүүдийн деривативын үржвэртэй тэнцүү деривативтай болно. x)$:

$$ \left(f(\varphi (x))\right)"=f_(u)"\left(\varphi (x_0) \баруун)\cdot \varphi"(x_0) $$

эсвэл богино тэмдэглэгээгээр: $y_(x)"=y_(u)"\cdot u_(x)"$.

Энэ хэсгийн жишээнүүдэд бүх функцууд нь $y=f(x)$ хэлбэртэй байна (өөрөөр хэлбэл бид зөвхөн нэг хувьсагчийн $x$ функцийг авч үздэг). Үүний дагуу бүх жишээн дээр $y"$ деривативыг $x$ хувьсагчтай холбоотойгоор авдаг. Дериватив нь $x$ хувьсагчтай холбоотой гэдгийг онцлон тэмдэглэхийн тулд $y"_x$ гэж ихэвчлэн $y-ийн оронд бичдэг. "$.

Жишээ No1, No2, No3-ын тойм нарийвчилсан үйл явцнийлмэл функцүүдийн деривативыг олох. Жишээ №4 нь дериватив хүснэгтийг илүү бүрэн дүүрэн ойлгоход зориулагдсан бөгөөд үүнтэй танилцах нь зүйтэй юм.

1-3-р жишээн дэх материалыг судалсны дараа 5, 6, 7-р жишээнүүдийг бие даан шийдвэрлэхийг зөвлөж байна. №5, №6, 7-р жишээнүүд нь богино хэмжээний шийдлийг агуулдаг бөгөөд ингэснээр уншигч өөрийн үр дүнгийн зөв эсэхийг шалгах боломжтой болно.

Жишээ №1

$y=e^(\cos x)$ функцийн уламжлалыг ол.

Бид $y"$ нийлмэл функцийн деривативыг олох хэрэгтэй. $y=e^(\cos x)$ тул $y"=\left(e^(\cos x)\right)"$. $ \left(e^(\cos x)\right)"$ деривативыг ол. Бид деривативын хүснэгтээс 6-р томьёог ашиглана. 6-р томьёог ашиглахын тулд бидний тохиолдолд $u=\cos x$ гэдгийг анхаарч үзэх хэрэгтэй. Цаашдын шийдэл нь 6-р томьёонд $u$-ийн оронд $\cos x$ илэрхийллийг орлуулахад л оршино.

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)" \tag (1.1)$$

Одоо бид $(\cos x)"$ илэрхийллийн утгыг олох хэрэгтэй. Бид үүнээс 10-р томьёог сонгон деривативын хүснэгт рүү дахин шилжинэ. $u=x$-г 10-р томьёонд орлуулбал бид дараах байдалтай байна. : $(\cos x)"=-\ sin x\cdot x"$ Одоо олсон үр дүнгээр (1.1) тэгш байдлыг үргэлжлүүлье.

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x") \tag (1.2) $$

$x"=1$ тул бид тэгш байдлыг үргэлжлүүлнэ (1.2):

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x")=e^(\cos x)\cdot (-\sin x\cdot 1)=-\sin x\cdot e^(\cos x) \tag (1.3) $$

Тэгэхлээр (1.3) тэгшитгэлээс бидэнд: $y"=-\sin x\cdot e^(\cos x)$ байна. Мэдээжийн хэрэг, тайлбар болон завсрын тэгшитгэлийг ихэвчлэн алгасаж, деривативын олдворыг нэг мөрөнд бичнэ. тэгшитгэлийн нэгэн адил ( 1.3 ) Тиймээс нийлмэл функцийн дериватив олдсон тул хариултыг бичих л үлдлээ.

Хариулах: $y"=-\sin x\cdot e^(\cos x)$.

Жишээ №2

$y=9\cdot \arctg^(12)(4\cdot \ln x)$ функцийн уламжлалыг ол.

Бид $y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"$ деривативыг тооцоолох хэрэгтэй. Эхлэхийн тулд тогтмолыг (жишээ нь 9-ийн тоог) дериватив тэмдгээс хасаж болно гэдгийг анхаарна уу.

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \баруун)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)" \tag (2.1) $$

Одоо $\left(\arctg^(12)(4\cdot \ln x) \right)"$ илэрхийлэл рүү шилжье. Деривативын хүснэгтээс хүссэн томьёо сонгоход хялбар болгохын тулд би илэрхийллийг танилцуулъя. Энэ хэлбэрээр асуултанд: $\left( \left(\arctg(4\cdot \ln x) \right)^(12)\right)"$. Одоо 2-р томъёог ашиглах шаардлагатай байгаа нь тодорхой байна, i.e. $\left(u^\alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Энэ томьёонд $u=\arctg(4\cdot \ln x)$ болон $\alpha=12$-г орлуулъя:

Хүлээн авсан үр дүнд тэгш байдлыг (2.1) нэмбэл бид:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \баруун)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \баруун)"= 108\cdot\left(\arctg(4\cdot \ln x) \баруун)^(11)\cdot (\arctg(4\cdot \ln x))" \tag (2.2) $$

Ийм нөхцөлд шийдвэр гаргагч эхний алхамд томьёоны оронд $(\arctg \; u)"=\frac(1)(1+u^2)\cdot u"$ томьёог сонгоход алдаа гардаг. $\left(u^\ alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Гол нь гадаад функцийн дериватив хамгийн түрүүнд байх ёстой. $\arctg^(12)(4\cdot 5^x)$ илэрхийллийн гадна функцийг ойлгохын тулд $\arctg^(12)(4\cdot 5^) илэрхийллийн утгыг тооцоолж байна гэж төсөөлөөд үз дээ. x)$ ямар нэг утгаар $x$. Эхлээд та $5^x$-ийн утгыг тооцоолж, үр дүнг 4-өөр үржүүлж, $4\cdot 5^x$ авна. Одоо бид энэ үр дүнгээс арктангенсыг авч, $\arctg(4\cdot 5^x)$-г олж авна. Дараа нь бид гарсан тоог арван хоёр дахь зэрэглэлд хүргэж, $\arctg^(12)(4\cdot 5^x)$ авна. Сүүлийн үйлдэл, өөрөөр хэлбэл. 12-ын хүчийг нэмэгдүүлэх нь гадаад функц болно. Эндээс бид тэгш байдлын дагуу хийгдсэн деривативыг олж эхлэх ёстой (2.2).

Одоо бид $(\arctg(4\cdot \ln x))"$-г олох хэрэгтэй. Бид деривативын хүснэгтийн 19-р томьёог ашиглаж, $u=4\cdot \ln x$-г орлуулна:

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)" $$

$(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$-г харгалзан үр дүнгийн илэрхийлэлийг бага зэрэг хялбарчилж үзье.

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)"=\frac( 1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" $$

Тэгш байдал (2.2) одоо дараах болно:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \баруун)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \баруун)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" \tag (2.3) $$

$(4\cdot \ln x)"$-г олоход л үлдлээ. Дериватив тэмдгээс тогтмолыг (өөрөөр хэлбэл 4) гаргая: $(4\cdot \ln x)"=4\cdot (\ln x)" $(\ln x)"$-г олохын тулд бид №8 томьёог ашиглан $u=x$ гэж орлуулна: $(\ln x)"=\frac(1)(x)\cdot x. "$. $x"=1$ тул $(\ln x)"=\frac(1)(x)\cdot x"=\frac(1)(x)\cdot 1=\frac(1)(x ) $ Хүлээн авсан үр дүнг (2.3) томъёогоор орлуулснаар бид дараахь зүйлийг олж авна.

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \баруун)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \баруун)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" =\\ =108\cdot \left(\arctg(4\cdot \ln x) \баруун)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot 4\ cdot \frac(1)(x)=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x)).

Сүүлчийн тэгшитгэлд бичсэн шиг нийлмэл функцийн дериватив нэг мөрөнд ихэвчлэн олддог гэдгийг сануулъя. Тиймээс стандарт тооцоо, хяналтын ажлыг бэлтгэхдээ шийдлийг нарийвчлан тайлбарлах шаардлагагүй болно.

Хариулах: $y"=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x))$.

Жишээ №3

$y=\sqrt(\sin^3(5\cdot9^x))$ функцийн $y"$-г ол.

Эхлээд $y$ функцийг бага зэрэг хувиргаж, радикал (үндэс)-ийг хүч болгон илэрхийлье: $y=\sqrt(\sin^3(5\cdot9^x))=\left(\sin(5\cdot 9) ^x) \right)^(\frac(3)(7))$. Одоо деривативыг хайж эхэлцгээе. $y=\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))$ тул:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\баруун)" \tag (3.1) $$

$u=\sin(5\cdot 9^x)$ болон $\alpha=\frac(3)(7)$-г орлуулж, деривативын хүснэгтээс 2-р томьёог ашиглая:

$$ \left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"= \frac(3)(7)\cdot \left( \sin(5\cdot 9^x)\right)^(\frac(3)(7)-1) (\sin(5\cdot 9^x))"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" $$

Хүлээн авсан үр дүнг ашиглан тэгш байдлыг (3.1) үргэлжлүүлье.

$$ y"=\left(\left(\sin(5\cdot 9^x)\баруун)^(\frac(3)(7))\баруун)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" \tag (3.2) $$

Одоо бид $(\sin(5\cdot 9^x))"$-г олох хэрэгтэй. Үүний тулд бид деривативын хүснэгтээс 9-р томьёог ашиглан $u=5\cdot 9^x$-г орлуулна.

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Хүлээн авсан үр дүнд тэгш байдлыг (3.2) нэмснээр бид дараахь зүйлийг олж авна.

$$ y"=\left(\left(\sin(5\cdot 9^x)\баруун)^(\frac(3)(7))\баруун)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\баруун)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)" \tag (3.3) $$

$(5\cdot 9^x)"$-г олоход л үлдлээ. Эхлээд дериватив тэмдгийн гаднах тогтмолыг ($5$ тоо) авч үзье, өөрөөр хэлбэл $(5\cdot 9^x)"=5\cdot (9). ^x) "$. $(9^x)"$ деривативыг олохын тулд деривативын хүснэгтийн 5-р томьёог ашиглан $a=9$, $u=x$-ийг орлуулан: $(9^x) )"=9^x\cdot \ ln9\cdot x"$. $x"=1$ тул $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Одоо бид тэгш байдлыг (3.3) үргэлжлүүлж болно:

$$ y"=\left(\left(\sin(5\cdot 9^x)\баруун)^(\frac(3)(7))\баруун)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\баруун)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)"= \frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9 ^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\баруун) ^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

Бид $\left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))$-г $\ хэлбэрээр бичиж, хүчнээс радикалууд (жишээ нь, үндэс) рүү дахин буцаж болно. frac(1)(\left(\sin(5\cdot 9^x)\баруун)^(\frac(4)(7)))=\frac(1)(\sqrt(\sin^4(5\) cdot 9^x)))$. Дараа нь деривативыг дараах хэлбэрээр бичнэ.

$$ y"=\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x) (\sqrt(\sin^4(5\cdot 9^x))).

Хариулах: $y"=\frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x)(\sqrt(\sin^4(5\) cdot 9^x)))$.

Жишээ № 4

Деривативын хүснэгтийн 3 ба 4-р томьёо нь энэ хүснэгтийн 2-р томьёоны онцгой тохиолдол болохыг харуул.

Деривативын хүснэгтийн 2-р томьёо нь $u^\alpha$ функцийн деривативыг агуулна. №2 томьёонд $\alpha=-1$-г орлуулснаар бид дараахыг авна.

$$(u^(-1))"=-1\cdot u^(-1-1)\cdot u"=-u^(-2)\cdot u"\tag (4.1)$$

$u^(-1)=\frac(1)(u)$ ба $u^(-2)=\frac(1)(u^2)$ тул тэгш байдлыг (4.1) дараах байдлаар дахин бичиж болно. $ \left(\frac(1)(u) \right)"=-\frac(1)(u^2)\cdot u"$. Энэ бол деривативын хүснэгтийн 3-р томъёо юм.

Деривативын хүснэгтийн 2-р томьёог дахин авч үзье. Үүнд $\alpha=\frac(1)(2)$ орлуулъя:

$$\left(u^(\frac(1)(2))\баруун)"=\frac(1)(2)\cdot u^(\frac(1)(2)-1)\cdot u" =\frac(1)(2)u^(-\frac(1)(2))\cdot u"\tag (4.2) $$

Учир нь $u^(\frac(1)(2))=\sqrt(u)$ ба $u^(-\frac(1)(2))=\frac(1)(u^(\frac( 1) )(2)))=\frac(1)(\sqrt(u))$, тэгш байдлыг (4.2) дараах байдлаар дахин бичиж болно.

$$ (\sqrt(u))"=\frac(1)(2)\cdot \frac(1)(\sqrt(u))\cdot u"=\frac(1)(2\sqrt(u) )\cdot u" $$

Үүссэн $(\sqrt(u))"=\frac(1)(2\sqrt(u))\cdot u"$ нь деривативын хүснэгтийн 4-р томьёо юм. Таны харж байгаагаар дериватив хүснэгтийн 3, 4-р томьёог 2-р томъёоноос харгалзах $\alpha$ утгыг орлуулах замаар олж авсан.

Нарийн төвөгтэй функцийн деривативын томъёог ашиглан деривативыг тооцоолох жишээг үзүүлэв.

Дараах функцүүдийн деривативыг тооцоолох жишээг энд харуулав.
; ; ; ; .

Хэрэв функцийг нийлмэл функцээр дараах хэлбэрээр дүрсэлж чадвал:
,
Дараа нь түүний деривативыг дараахь томъёогоор тодорхойлно.
.
Доорх жишээнүүдэд бид энэ томъёог дараах байдлаар бичнэ.
.
Хаана.
Энд үүсмэл тэмдгийн дор байрлах дэд тэмдэгтүүд буюу , ялгах хийгдэх хувьсагчдыг илэрхийлнэ.

Ихэвчлэн деривативын хүснэгтэд x хувьсагчаас функцүүдийн деривативуудыг өгдөг. Гэсэн хэдий ч x нь албан ёсны параметр юм. x хувьсагчийг өөр ямар ч хувьсагчаар сольж болно. Тиймээс функцийг хувьсагчаас ялгахдаа бид деривативын хүснэгтэд х хувьсагчийг u хувьсагч болгон өөрчилдөг.

Энгийн жишээнүүд

Жишээ 1

Нарийн төвөгтэй функцийн деривативыг ол
.

Шийдэл

Үүнийг бичээд үзье өгөгдсөн функцтэнцүү хэлбэрээр:
.
Деривативын хүснэгтээс бид дараахь зүйлийг олно.
;
.

Нарийн төвөгтэй функцийн деривативын томъёоны дагуу бид дараах байдалтай байна.
.
Энд.

Хариулах

Жишээ 2

Деривативыг ол
.

Шийдэл

Бид үүсмэл тэмдгээс тогтмол 5-ыг авч, деривативын хүснэгтээс олж авна.
.


.
Энд.

Хариулах

Жишээ 3

Деривативыг ол
.

Шийдэл

Бид тогтмолыг гаргаж авдаг -1 Деривативын тэмдгийн хувьд болон деривативын хүснэгтээс бид дараахь зүйлийг олно.
;
Деривативын хүснэгтээс бид дараахь зүйлийг олно.
.

Бид нарийн төвөгтэй функцийн деривативын томъёог ашигладаг.
.
Энд.

Хариулах

Илүү төвөгтэй жишээнүүд

Илүү их нарийн төвөгтэй жишээнүүдБид нарийн төвөгтэй функцийг ялгах дүрмийг хэд хэдэн удаа ашигладаг. Энэ тохиолдолд бид деривативыг төгсгөлөөс нь тооцдог. Өөрөөр хэлбэл, бид функцийг бүрэлдэхүүн хэсгүүдэд хувааж, хамгийн энгийн хэсгүүдийн деривативуудыг ашиглан олдог деривативын хүснэгт. Бид ч бас ашигладаг нийлбэрийг ялгах дүрэм, бүтээгдэхүүн ба бутархай. Дараа нь бид орлуулалт хийж, нийлмэл функцийн деривативын томъёог хэрэглэнэ.

Жишээ 4

Деривативыг ол
.

Шийдэл

Томъёоны хамгийн энгийн хэсгийг сонгоод деривативыг нь олъё. .



.
Энд бид тэмдэглэгээг ашигласан
.

Бид олж авсан үр дүнг ашиглан анхны функцийн дараагийн хэсгийн деривативыг олно. Бид нийлбэрийг ялгах дүрмийг ашигладаг.
.

Дахин нэг удаа бид нарийн төвөгтэй функцуудыг ялгах дүрмийг ашигладаг.

.
Энд.

Хариулах

Жишээ 5

Функцийн деривативыг ол
.

Шийдэл

Томъёоны хамгийн энгийн хэсгийг сонгоод деривативын хүснэгтээс уламжлалыг олъё. .

Бид нарийн төвөгтэй функцуудыг ялгах дүрмийг ашигладаг.
.
Энд
.

Урьдчилсан артиллерийн бэлтгэл хийсний дараа 3-4-5 үүрний функц бүхий жишээнүүд нь аймшигтай биш байх болно. Дараах хоёр жишээ зарим хүмүүст төвөгтэй мэт санагдаж болох ч хэрэв та тэдгээрийг ойлговол (хэн нэгэн нь зовох болно) дифференциал тооцооллын бараг бүх зүйл хүүхдийн тоглоом шиг санагдах болно.

Жишээ 2

Функцийн деривативыг ол

Өмнө дурьдсанчлан, нарийн төвөгтэй функцийн деривативыг олохдоо юуны түрүүнд шаардлагатай байдаг ЗөвХөрөнгө оруулалтаа ОЙЛГООРОЙ. Эргэлзээтэй байгаа тохиолдолд би танд хэрэгтэй аргыг сануулж байна: жишээ нь бид "x"-ийн туршилтын утгыг авч, (сэтгэцийн хувьд эсвэл ноорог хэлбэрээр) энэ утгыг "аймшигтай илэрхийлэл" болгон орлуулахыг оролддог.

1) Эхлээд бид илэрхийллийг тооцоолох хэрэгтэй бөгөөд энэ нь нийлбэр нь хамгийн гүн шигтгээ гэсэн үг юм.

2) Дараа нь та логарифмыг тооцоолох хэрэгтэй:

4) Дараа нь косинусыг куб болгоно:

5) Тав дахь шатанд ялгаа:

6) Эцэст нь, хамгийн гадна талын функц нь квадрат язгуур юм:

Нарийн төвөгтэй функцийг ялгах томъёо хамгийн гадна талын функцээс хамгийн дотоод хүртэл урвуу дарааллаар хэрэгжинэ. Бид шийднэ:

Алдаа байхгүй бололтой:

1) Квадрат язгуурын деривативыг ав.

2) Дүрмийг ашиглан зөрүүний деривативыг авна

3) Гурав дахины дериватив нь тэг байна. Хоёр дахь гишүүнд бид градусын деривативыг (шоо) авна.

4) Косинусын деривативыг ав.

6) Эцэст нь бид хамгийн гүн шингээлтийн деривативыг авдаг.

Энэ нь хэтэрхий хэцүү мэт санагдаж болох ч энэ нь хамгийн харгис жишээ биш юм. Жишээлбэл, Кузнецовын цуглуулгыг авбал дүн шинжилгээ хийсэн деривативын бүх гоо үзэсгэлэн, энгийн байдлыг үнэлэх болно. Оюутан нийлмэл функцийн деривативыг хэрхэн олохыг ойлгож байна уу, эсвэл ойлгохгүй байна уу гэдгийг шалгахын тулд шалгалтанд ижил төстэй зүйл өгөх дуртай болохыг би анзаарсан.

Дараах жишээ нь та өөрөө шийдэхэд зориулагдсан болно.

Жишээ 3

Функцийн деривативыг ол

Зөвлөгөө: Эхлээд бид шугаман байдлын дүрэм болон бүтээгдэхүүнийг ялгах дүрмийг хэрэгжүүлнэ

Хичээлийн төгсгөлд бүрэн шийдэл, хариулт.

Илүү жижиг, илүү сайхан зүйл рүү шилжих цаг болжээ.
Хоёр биш, гурван функцийн үржвэрийг жишээгээр харуулах нь ердийн зүйл биш юм. Гурван хүчин зүйлийн үржвэрийн деривативыг хэрхэн олох вэ?

Жишээ 4

Функцийн деривативыг ол

Эхлээд бид гурван функцийн үржвэрийг хоёр функцийн үржвэр болгон хувиргах боломжтой юу? Жишээлбэл, хэрэв бид үржвэрт хоёр олон гишүүнтэй байсан бол хаалтыг нээж болно. Гэхдээ авч үзэж буй жишээн дээр бүх функцүүд өөр өөр байдаг: градус, экспонент, логарифм.

Ийм тохиолдолд зайлшгүй шаардлагатай дараалсанбүтээгдэхүүнийг ялгах дүрмийг хэрэглэнэ хоёр удаа

Энэ заль мэх нь "y" -ээр бид хоёр функцийн үржвэрийг тэмдэглэдэг: "ve" -ээр бид логарифмыг тэмдэглэдэг. Яагаад үүнийг хийж болох вэ? Үнэхээр тийм үү - энэ нь хоёр хүчин зүйлийн бүтээгдэхүүн биш бөгөөд дүрэм ажиллахгүй байна уу?! Ямар ч төвөгтэй зүйл байхгүй:


Одоо энэ дүрмийг хоёр дахь удаагаа хэрэглэх үлдлээ хаалтанд:

Та мөн мушгиж, хаалтанд ямар нэгэн зүйл хийж болно, гэхдээ энэ тохиолдолд хариултыг яг энэ хэлбэрээр үлдээх нь дээр - шалгахад хялбар байх болно.

Үзсэн жишээг хоёр дахь аргаар шийдэж болно.

Хоёр шийдэл нь туйлын тэнцүү юм.

Жишээ 5

Функцийн деривативыг ол

Энэ нь бие даасан шийдлийн жишээ бөгөөд үүнийг эхний аргыг ашиглан шийддэг.

Бутархайтай ижил төстэй жишээг авч үзье.

Жишээ 6

Функцийн деривативыг ол

Та эндээс хэд хэдэн аргаар явж болно:

Эсвэл иймэрхүү:

Гэхдээ эхлээд хуваалтыг ялгах дүрмийг ашиглавал шийдэл илүү нягт бичигдэх болно , бүхэл тоологчийг авч үзвэл:

Зарчмын хувьд жишээ нь шийдэгдсэн, хэрэв байгаагаар нь үлдээвэл алдаа гарахгүй. Гэхдээ хэрэв танд цаг байгаа бол хариултыг хялбарчлах боломжтой эсэхийг шалгахын тулд ноорог шалгаж үзэхийг зөвлөж байна уу?

Тоолуурын илэрхийлэлийг нийтлэг хуваагч болгон багасгаж, бутархайн гурван давхар бүтэцээс салцгаая.:

Нэмэлт хялбаршуулах сул тал нь деривативыг олохдоо бус харин сургуулийн өмнөх өөрчлөлтийн үед алдаа гаргах эрсдэлтэй байдаг. Нөгөөтэйгүүр, багш нар даалгавраас татгалзаж, деривативыг "санаахыг" хүсдэг.

Өөрөө шийдэх энгийн жишээ:

Жишээ 7

Функцийн деривативыг ол

Бид дериватив олох аргуудыг үргэлжлүүлэн эзэмшсээр байгаа бөгөөд одоо "аймшигтай" логарифмыг ялгахын тулд санал болгож буй ердийн тохиолдлыг авч үзэх болно.

Математикийн физикийн асуудал эсвэл жишээг шийдвэрлэх нь дериватив, түүнийг тооцоолох аргуудын талаар мэдлэггүйгээр бүрэн боломжгүй юм. Дериватив нь математик шинжилгээний хамгийн чухал ойлголтуудын нэг юм. Бид өнөөдрийн нийтлэлийг энэ үндсэн сэдэвт зориулахаар шийдлээ. Дериватив гэж юу вэ, түүний физик, геометрийн утга нь юу вэ, функцийн деривативыг хэрхэн тооцоолох вэ? Эдгээр бүх асуултыг нэг дор нэгтгэж болно: деривативыг хэрхэн ойлгох вэ?

Деривативын геометрийн болон физикийн утга

Функц байх болтугай f(x) , тодорхой интервалд заасан (а, б) . x ба x0 цэгүүд энэ интервалд хамаарна. X өөрчлөгдөхөд функц нь өөрөө өөрчлөгддөг. Аргументыг өөрчлөх - түүний утгуудын ялгаа x-x0 . Энэ ялгааг дараах байдлаар бичнэ дельта х ба аргументийн өсөлт гэж нэрлэдэг. Функцийн өөрчлөлт эсвэл өсөлт нь хоёр цэг дэх функцийн утгуудын зөрүү юм. Деривативын тодорхойлолт:

Тухайн цэг дэх функцийн үүсмэл утга нь өгөгдсөн цэг дэх функцийн өсөлтийг аргументийн өсөлттэй харьцуулсан харьцааны хязгаар нь тэг байх хандлагатай байдаг.

Үгүй бол дараах байдлаар бичиж болно.

Ийм хязгаар олох нь ямар учиртай юм бэ? Тэгээд энэ нь юу вэ:

цэг дээрх функцийн дериватив нь OX тэнхлэг хоорондын өнцгийн тангенс ба тухайн цэг дэх функцийн графиктай шүргэгчтэй тэнцүү байна.


Деривативын физик утга: цаг хугацааны хувьд замын дериватив нь шулуун хөдөлгөөний хурдтай тэнцүү байна.

Сургуулийн наснаас хойш хүн бүр хурд бол тодорхой зам гэдгийг мэддэг x=f(t) ба цаг хугацаа т . Тодорхой хугацааны дундаж хурд:

Цаг мөчид хөдөлгөөний хурдыг олж мэдэх t0 Та хязгаарыг тооцоолох хэрэгтэй:

Нэгдүгээр дүрэм: тогтмолыг тогтооно

Тогтмолыг дериватив тэмдгээс гаргаж авч болно. Түүнээс гадна үүнийг хийх ёстой. Математикийн жишээг шийдвэрлэхдээ үүнийг дүрмээр аваарай - Хэрэв та илэрхийлэлийг хялбарчилж чадвал түүнийг хялбарчлахаа мартуузай .

Жишээ. Деривативыг тооцоолъё:

Хоёрдугаар дүрэм: функцүүдийн нийлбэрийн дериватив

Хоёр функцийн нийлбэрийн дериватив нь эдгээр функцүүдийн деривативуудын нийлбэртэй тэнцүү байна. Функцийн зөрүүний деривативын хувьд ч мөн адил.

Бид энэ теоремын баталгааг өгөхгүй, харин практик жишээг авч үзэх болно.

Функцийн деривативыг ол:

Гуравдугаар дүрэм: функцүүдийн үржвэрийн дериватив

Хоёр дифференциалагдах функцийн үржвэрийн деривативыг дараах томъёогоор тооцоолно.

Жишээ нь: функцийн деривативыг ол:

Шийдэл:

Энд нарийн төвөгтэй функцүүдийн деривативыг тооцоолох талаар ярих нь чухал юм. Комплекс функцийн дериватив нь завсрын аргументтай харьцуулахад энэ функцийн деривативын үржвэртэй, бие даасан хувьсагчтай холбоотой завсрын аргументийн деривативтай тэнцүү байна.

Дээрх жишээн дээр бид дараах илэрхийлэлтэй тулгардаг.

Энэ тохиолдолд завсрын аргумент нь тав дахь зэрэглэлд 8x байна. Ийм илэрхийллийн деривативыг тооцоолохын тулд эхлээд завсрын аргументтай холбоотойгоор гадаад функцийн деривативыг тооцож, дараа нь бие даасан хувьсагчийн хувьд завсрын аргументийн деривативаар үржүүлнэ.

Дөрөвдүгээр дүрэм: хоёр функцийн хуваалтын дериватив

Хоёр функцийн хуваалтын деривативыг тодорхойлох томъёо:

Бид даммигийн деривативын талаар эхнээс нь ярихыг хичээсэн. Энэ сэдэв нь тийм ч энгийн зүйл биш тул анхааруулах хэрэгтэй: жишээнүүдэд алдаанууд ихэвчлэн байдаг тул деривативыг тооцоолохдоо болгоомжтой байгаарай.

Энэ болон бусад сэдвээр асуух зүйл байвал оюутны үйлчилгээтэй холбогдож болно. Богино хугацаанд бид танд хамгийн хэцүү сорилтыг шийдэж, даалгавруудыг ойлгоход тань туслах болно, тэр ч байтугай та урьд өмнө хэзээ ч дериватив тооцоо хийж байгаагүй.



Сайт дээр шинэ

>

Хамгийн алдартай