Домой Интерьер квартиры Набивочные и смазочные материалы применяемые в сантехнике. Сведения о материалах, применяемых в сантехнике

Набивочные и смазочные материалы применяемые в сантехнике. Сведения о материалах, применяемых в сантехнике

Чугун.

Это нековкий сплав железа с углеродом (2,5-3,6%). Он обладает хорошими литейными качествами, низкой стоимостью, но это хрупкий материал (разрушается сразу, в пластичных материалах есть период пластических деформаций, когда можно установить момент наступления разрушения). В связи с этим чугун имеет ограниченную область применения.

Из чугуна изготавливают арматуру, кронштейны, стойки.

Серый чугун СЧ15-32 (цифры означают предел прочности при растяжении и при сжатии соответственно) используется для изготовления арматуры на сети низкого давления.

Ковкий чугун КЧ30-6 (коваться не может, но имеет повышенные пластичные свойства) используется для арматуры сетей среднего и высокого давления.

Жаростойкий чугун ЖЧ-1 используется для арматуры, работающей при температуре до 600 0 С.

Прокладочные материалы.

Их назначение – обеспечить плотность неподвижных соединений. Поэтому они:

  1. должны быть дешевыми и доступными (т.к. их необходимо достаточно часто заменять),
  2. должны быть упругими (для достижения высокой плотности соединений),
  3. должны иметь достаточную прочность (чтобы не разрушиться, не раздавиться и не выдавливаться при затяжке),
  4. должны сохранять свои физические свойства при температуре рабочей среды,
  5. не должны подвергаться коррозии.

Паронит используют для холодных и горячих газов с температурой до 450 0 С в газопроводах с давлением до 1,2 МПа, в установках СУГ давлением до 1,6 МПа, для нефтепродуктов.

Пластификат, фторопласт для уплотнения фланцевых соединений в газопроводах с давлением до 1,2 МПа, в установках СУГ давлением до 1,6 МПа.

Металлические кольца . Их «-» - создание необходимых усилий для достижения плотности соединений. Алюминий – для уплотнения оборудования, установок СУГ при всех давлениях, а также для сернистых газов. Медь – для уплотнения оборудования, установок СУГ.

Резина обладающая высокой морозо- и маслобензостойкостью используется для уплотнения соединений в газопроводах с давлением до 0,6 МПа.

Для придания прокладкам огнестойких свойств применяют асбест (асбестовый картон, асбестовое армированное полотно).

Льняная прядь промасленная свинцовым суриком используется для уплотнения резьбовых соединений.

Большинство конструкций газового оборудования имеет сальниковое устройство для уплотнения подвижных соединений.

Материалы сальниковых набивок должны иметь:

  1. высокие упругие свойства
  2. физическую стойкость против действия рабочей среды
  3. малый коэффициент трения

Для этих целей применяют: асбест в виде плетеного шнура,

пеньковый шнур,

графит,

тальк,

фторопласт и др.

(В расплавленное говяжье сало опускают шнур, кипятят 5 минут, охлаждают и обваливают в порошке графита.)

Набивочные материалы

Для обеспечения плотности отдельных узлов запорной арматуры и различных конструкций используются сальниковые набивки (ГОСТ 5152-77), рассчитанные на работу в широком диапазоне давлений и температур воды, пара, газов, горючих и агрессивных сред.

В зависимости от условий работы используются набивки 3-х видов: плетеные, скатанные и кольцевые.

Плетеные набивки изготавливаются из хлопчатобумажных, пеньковых, джутовых, льняных, асбестовых шнуров различного плетения - с сердечником, армированные или неармированные, сухие иди пропитанные антифрикционным и другими составами (тальк, графит, резина, фторопласт). Они рассчитаны на максимальную температуру 100 о С - 400 о С, давление 4,5-20 МПа и на использование в следующих средах: воздух, вода промышленная и питьевая, растворы солей, водяной пар, инертные пары и газы.

Скатанные набивки изготавливаются путем скатывания шнуров из хлопчатобумажной, прорезиненной, асбестовой ткани. Они рассчитаны на максимальную температуру 100 о С - 400 о С, давление 10-20 МПа и применение для промышленной воды и перегретого и насыщенного пара.

Кольцевые набивки представляют собой кольца цельноскатанные или разрезные многослойные фигурного сечения из асбестовой прорезиненной ткани, вулканизированные и графитизированные. Они рассчитаны на температуру 300 о С, давление 20 МПа, применяются для воздуха, промышленной воды и пара.

Графит (ГОСТ 4596-75) - кристаллическое вещество серо-стального цвета, мягкое и жирное на ощупь, производится в виде токноразмолотого порошка и в виде чешуек. Чешуйчатый графит используется для пропитки сальниковых набивок и паронитовых прокладок. Графит, замешанный на натуральной олифе, называется графитовой пастой. Данная паста применяется для смазки ниппелей и ниппельных гнезд при сборке секционных чугунных котлов.

Смазочные материалы, олифы и краски

Смазочные материалы применяются для обеспечения нормальной работы, снижения трения и предотвращения износа движущихся и вращающихся частей санитарно-технического оборудования, приборов и арматуры, в частности самосмазывающейся, а также для временной защиты металлических поверхностей от коррозии.

Смазочные материалы подразделяются на смазочные масла (жидкие материалы) и консистентные смазки.

Смазки и смазочные масла выпускаются универсального и специального назначения, при этом область и условия их применения регламентируются соответствующими стандартами и техническими условиями.

Масло индустриальное (веретенное) марок 12 и 20 по ГОСТ 20799-75 применяется для смазывания трущихся частей механизмов и смачивания фильтрующих поверхностей масляных фильтров. Масло компрессорное марки 12 (М) по ГОСТ 1861-73 применяется для смазывания частей компрессоров и воздуходувок. Масла висциновое и парфюмерное используются для поглощения пыли в фильтрах систем вентиляции.

Консистентные смазки (солидолы) представляют собой густую мазь и применяются в случае невозможности или затруднения подвода жидкой смазки для смазывания узлов и деталей. Эти смазки подразделяются на три вида: синтетические (из искусственных жиров), жировые (из натуральных растительных и животных жиров), эмульсионные (из масел, смешанные с канифолью). Солидолы используются для смазки шариковых и роликовых подшипников, для защиты от коррозии и для консервации обработанных металлических поверхностей. Жировой солидол марки УС по ГОСТ 1033-73 используется для смазки вентиляторов и других механизмов при температуре не более 60 о С. Графитная смазка БВН-1 по ГОСТ 5656-60 применяется для смазки сопрягаемых поверхностей стальных труб, подвергающихся в процессе эксплуатации температурным изменениям. Технический вазелин и консервационные смазки К-17 используются с целью консервации и защиты от коррозии металлических поверхностей санитарно-технического оборудования.

Назначение лакокрасочных материалов - защита изделий от коррозии и придание им декоративного вида.

К лакокрасочным материалам предъявляются следующие требования: способность прочно удерживаться на поверхности окрашиваемого изделия, наличие необходимой механической прочности, твердости и эластичности, стойкость по отношению к воздействию воды, нефтепродуктов, солнечных лучей, сохранение своих качеств при низких и высоких температурах, водонепроницаемость, способность быстро высыхать и обеспечивать требуемый цвет.

В зависимости от назначения лакокрасочные материалы разделяются на три группы: грунтовки, предназначенные для обеспечения прочной связи между окрашиваемой поверхностью и лакокрасочным покрытием; шпаклевки, предназначенные для выравнивания окрашиваемой поверхности; краски (лаки, эмали), предназначенные для образования наружного слоя покрытия.

Грунтовки представляют собой либо специально изготовляемые составы (суспензии из пигментов, растворителя и наполнителей), либо смесь краски с олифой. Грунтовка наносится тонким слоем, поэтому ее вязкость (густота) должна быть значительно ниже вязкости самого покрытия.

Шпаклевки представляют собой густую жидкость или пасту, являющуюся смесью грунтовки, растворителя, пигмента и заполнителя (мел, гипс, каолин).

Краски подразделяются на масляные краски, лаки и эмали.

Масляные краски представляют собой пасту, состоящую из красителя, небольшого количества растворителя и специальных примесей. Перед употреблением масляные краски необходимо разводить олифой или растворителем. Лаки представляют собой раствор смолы в масле или легко испаряющемся растворителе с добавлением специальных примесей. Эмали - это тонко растертые красители, разведенные на лаке.

Олифа оксоль (ГОСТ 190-68) - заменитель натуральной олифы, изготовленной уплотнением льняного масла с продуванием его воздухом в присутствии сиккатива и последующим добавлением растворителя (уайт спирита). Применяется для разведения густотертых красок.

Грунтовка ГС-2020 (ГОСТ 4056-63*) представляет собой суспензию пигментов (сурика железного и цинковых белил) и наполнителя (талька) во фталиевом лаке с добавлением растворителей, сиккатива и стабилизатора. Используется для грунтования металлических поверхностей. Пленка грунтовки устойчива к изменению температур от - 40 о С до + 60 о С. Время высыхания при температуре 100-110 о С составляет не более 35 минут, при температуре 18-23 о С - не более 48 часов. Наносится краскораспылителем, кистью, окунанием. С целью получения рабочей вязкости грунтовку разбавляют сольвентом, ксилолом или смесью одного из указанных растворителей с уайт-спиритом.

Сурик железный сухой (ГОСТ 8135-74) представляет собой естественный минеральный пигмент, состоящий в основном из окиси железа. В зависимости от назначения производится двух марок: А - для изготовления грунтовок, эмалей и масляных красок; Б - для изготовления клеевых красок, цветной асбофанеры и асбестотехнических изделий.

Краски масляные цветные густотертые (ГОСТ 8292-75) и специальные (ГОСТ 18596-73) представляют собой пасту из смеси сухих пигментов и наполнителя, затертых на натуральной олифе или ее заменителях. Применяются после разведения олифой до рабочей вязкости для покрытия наружных поверхностей изделий в целях предохранения их от коррозии и придания им отличительной окраски. Данные покрытия являются атмосферостойкими. Наносятся краскораспылителем, кистью, окунанием, струйным обливом или распылением в электростатическом поле. В последнем случае в краску добавляется уайт-спирит или скипидар. Сушка краски при температуре 18-22 о С осуществляется в течение 24 часов, при температуре 100 о С - в течение 2 часов.

Лак БТ-577 и краска БТ-177 изготавливается по ГОСТ 5631-70*. Лак БТ-577, представляющий собой раствор черных смол и растительных масел в органических летучих растворителях, используется для покрытия металлических поверхностей, а также при изготовлении краски БТ-177. Последняя является суспензией алюминиевой пудры в лаке БТ-577.

Приготовляется она непосредственно перед нанесением на поверхность путем введения 15-20% алюминиевой пудры в лак БТ-577. Краска предназначена для антикоррозионного и декоративного покрытия металлических поверхностей, на которые ее наносят при помощи краскораспылителя. Время практического высыхания при температуре 18-23 о С лака БТ-577 24 часа, краски БТ-177 - 16 часов, а при температуре 100 о С соответственно не более 20 и 30 мин. Покрытия из лака имеют пониженную атмосферостойкость, однако стойки к длительному воздействию температуры до 20 о С. Введение алюминиевой пудры повышает атмосферостойкость и теплостойкость покрытия. С целью улучшения защитных свойств рекомендуется горячая сушка.

Для разбавления олифы используется скипидар, для разбавления грунтовки и масляных красок - сольвент, уайт-спирит, ксилол.

Для обезжиривания металла перед покрытием лакокрасочным материалом рекомендуется очищать его уайт-спиритом или смесью едкого натра с тринатрийфосфатом, жидким стеклом.

Для покрытия воздуховодов систем вентиляции, функционирующих в агрессивных средах, используются перхлорвиниловые эмали, стойкие к воздействию паров кислот, щелочей и других агрессивных сред. Марки эмалей выбираются в зависимости от условий работы воздуховодов.

Материаловедение - Неметаллические и композиционные материалы

НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ

К традиционным неметаллическим материалам относятся волокнистые материалы (древесина), полимерные органические и неорганические материалы (пластмассы), каучуки и резины, клеи и герметики, лакокрасочные покрытия, стекло, керамика, а также материалы нового поколения – композиционные материалы на неметаллической основе.

ПЛАСТИЧЕСКИМИ МАССАМИ (пластмассами, пластиками) называют многокомпонентные искусственные материалы на основе природных или синтетических высокомолекулярных органических веществ, в состав которых входят: высокомолекулярная основа-связка (синтетические смолы, эфиры, целлюлоза); наполнители (порошкообразные, волокнистые, сетчатые вещества органического или неорганического происхождения), – пластификаторы (олеиновая кислота, стеарин, дибутилфторат), стабилизаторы, красители, отвердители и другие специальные добавки.

Классификация пластмасс

а) по типу связующего (полимера): фенопласты (основа – фенольные и фенолоальдегидные смолы); эпоксипласты (эпоксидная смола); амидопласты (полиамидная смола).

б) по виду наполнителя:

пресс-порошки – с порошкообразным органическим (древесная мука, целлюлоза, графит) или минеральным наполнителем (тальк, кварцевая мука, микроасбест и др.);

пресс-материалы :

волокниты – с волокнистым наполнителем из очесов хлопка и льна;

стекловолокниты – в виде стеклянных нитей;

асбоволокниты – в виде нитей асбеста;

слоистые пластики – с тканым и с листовым наполнителем, в том числе бумажные листы (гетинакс), хлопчатобумажные ткани (текстолит), стеклоткани (стеклотекстолит), асбестовые ткани (асботекстолит);

газонаполненные пластики – с воздушным наполнителем (пенопласты, поропласты).

в) в зависимости от поведения смолы при нагреве:

реактопласты

термопласты

Методы переработки пластмасс: экструзия, прессование, литьевое прессование, литье, вакуумное и пневматическое формование, вальцевание, вспенивание, сварка, горячее напыление, строгание в листы, обработка на станках со снятием стружки

Резинами называют высокомолекулярные материалы, которые получают при вулканизации (нагрев до 100–150С) смеси натурального или синтетического каучука с различными наполнителями (ингредиентами). В процессе вулканизации образуются пространственные «сшитые» (сетчатые) структуры, заменяя линейную или слабоветвистую структуру каучуков. Здесь активную роль играет вулканизирующее вещество – сера (или селен), от количества которого зависит величина ячейки структуры, эластичность и твердость резины: а) мягкие резины (2–4 % S); б) жесткие – полуэбониты (12–13 % S); в) эбониты (30–50 % S). Кроме серы в состав резин входят:наполнители, мягчители, противостарители, антипирены, фунгициды, дезодоранты, красители ипигменты, регенерат.

Резинотехнические изделия получают при вулканизации (термической обработке) прессованных деталей из сырой резины. Резиновые изделия часто армируют тканью или металлической сеткой.

Клеи и Герметики

относятся к пленкообразующим материалам, так как они способны при затвердевании образовывать прочные пленки, хорошо прилипающие к различным материалам.

Клеи применяются для склеивания разнородных материалов (металла, керамики, пластмасса, дерева), а герметики обеспечивают уплотнение и герметизацию клепаных, сварных и болтовых соединений, топливных отсеков и баков, различных металлических конструкций, приборов, агрегатов, швов, стыков и т.д. Клеи и герметики могут быть в виде жидкостей, паст, замазок, пленок.

Лакокрасочные материалы (лкм)

Лакокрасочные материалы представляют собой многокомпонентные составы, в жидком состоянии наносимые на поверхность изделий и высыхающие с образованием пленок, удерживаемых силами адгезии. Назначение лакокрасочных покрытий: а) защита металлов от коррозии, дерева и тканей – от гниения и набухания; б) в декоративных целях – придание изделиям желаемого внешнего вида; в) для достижения специальных свойств – электроизоляционных, теплозащитных, светостойких и др.

Различают лакокрасочные материалы: прозрачные (лак); кроющие (эмаль) и подготовительные (грунтовка). Покрытия наносятся вручную кистью, распылением, окунанием и другими способами. Надежность защиты поверхности изделий обычно достигается использованием многослойных покрытий.

Стекла

Стеклами (или стеклом) называют переохлажденные вещества, получаемые из жидких расплавов неорганических соединений и их смесей.

Основой стекол являются стеклообразуюшие оксиды, по которым стекла разделяют на силикатные (SiO 2), алюмосиликатные (А1 2 О 3 иSiO 2), боросиликатные (В 2 О 3 иSiO 2), алюмоборосиликатные А1 2 О 3 , В 2 О 3 иSiО 2), борофторалюмосиликатные (В 2 О 3 , А1 2 О 3 ,FиSiO 2), алюмофосфатные (А1 2 О 3 и Р 2 О 5), алюмосиликофосфатные (А1 2 О 3 ,SiO 2 и Р 2 О а), силикотитановые (SiO 2 и ТiO 2), силикоциркониевые (SiО 2 иZrО 2) и др.

По назначению стекла классифицируют на химически стойкие, термостойкие, электровакуумные, электрические, оптические и т. п.

Достоинством стекол является их способность к многократному переплаву без изменения свойств.

Жидкую однородную стеклянную массу перерабатывают в изделия различными методами : вытягиванием (листовое стекло, трубки и стержни), прокаткой (листовое стекло, трубки и стержни), прессованием (толстостенные изделия), методом выдувания (тонкостенные изделия сложной конфигурации, например, баллоны ламп, электронно-лучевых трубок и других приборов), методом спекания стеклянных порошков (детали сложной конфигурации, эксплуатируемые в условиях больших тепловых нагрузок). Применяют также методы прямого литья (для низковязких масс и изготовления несложных изделий), литья под давлением и центробежного литья. Техника и технологические приемы идентичны с переработкой металлов. Стеклянные изделия и полуфабрикаты после изготовления подвергают отжигу при 400–600 °С для снятия остаточных напряжений. Длительность отжига зависит от толщины изделия.

Ситаллами называют искусственные материалы микрокристаллического строения, получаемые направленной инициированной кристаллизацией изделий из стекол.

От стекол ситаллы отличаются более высокими физико-механическими свойствами (твердостью, химической стойкостью, низкими диэлектрическими потерями при высоких частотах и температурах, высокой диэлектрической проницаемостью при высоких температурах).

Изделия из ситаллов формуют методами вытягивания и прокатки, прессованием, литья под давлением.

Керамика – неорганический материал, получаемый из отформованных минеральных масс в процессе высокотемпературного обжига (спекание), в результате которого при 1200–2500 °С формируется структура материала, и изделие приобретает необходимые физико-механические свойства. Керамика была первым конкурентоспособным по сравнению с металлами классом материалов для использования при высоких температурах.

Основными компонентами технической керамики являются: а) оксиды (А1 2 O 3 – корунд,ZrO 2 ,MgO,CaO,BeO,ThO 2 ,UO 2), б) бескислородные соединения металлов (карбиды, бориды, нитриды, силициды, сульфиды).

В керамике могут присутствовать фазы: а) кристаллическая (основа в виде химических соединений или твердых растворов), б) стекловидная (в виде прослоек стекла в количестве 1–10 %, связывающих кристаллическую фазу), в) газовая (находится в порах керамики).

Большинство видов специальной технической керамики обладает плотной спекшейся структурой поликристаллического строения, для ее получения применяют специфические технологические приемы. Принципиальными недостатками керамики являются ее хрупкость и сложность обработки.

К основным областям применения керамических материалов относятся режущий инструмент, детали двигателей внутреннего сгорания и газотурбинных двигателей и др.

Прокладочные и уплотнительные материалы

Прокладочные материалы применяются для герметизации соединений корпусных или иных деталей (особенно при высоких давлениях и температурах внутри герметизируемой полости), для теплоизоляции и электроизоляции разъемных частей, устранения возможного просачивания жидкости и прорыва газов.

В качестве прокладочных материалов используют естественные, синтетические или композиционные материалы.

Естественные материалы – кора пробкового дерева, асбест, войлок и отожженная медь. Кора пробкового дерева применяется при небольших давлениях и температурах. Основное ее достоинство – маслобензостойкость. Из-за дефицитности применение коры пробкового дерева ограничено. Часто используют пробковую крошку в синтетическом клеящем составе. Асбест обладает прочностью, эластичностью, диэлектрическими свойствами, он устойчив при температурах до 1 500 °С. Войлок – плотный шерстяной материал. Войлочные прокладки предотвращают попадание в соединения посторонних загрязнений, задерживают смазочные масла, смягчают удары и вибрации, являются хорошим шумоизолятором. При высоких температурах и давлениях применяют красную отожженную медь.

Синтетические материалы – маслобензостойкая резина, различные пластмассы. Эти материалы обычно являются хорошими диэлектриками, но имеют низкие морозостойкость, теплостойкость и малый срок службы. Синтетические материалы применяются в неответственных соединениях или в качестве матрицы композиционных материалов.

Композиционные материалы – это целлюлозосодержащие материалы или композиция синтетический материал–упрочнитель. Целлюлозосодержащие материалы (бумага, плотный картон) применяются в качестве тонких прокладок в узлах, не подвергаемых воздействию влаги. Из бумаги, обработанной хлористым цинком, касторовым маслом и глицерином, получают фибру – прочный и долговечный диэлектрик, стойкий к маслу и воде. Из композиционных материалов чаще всего применяют композиции на основе маслобензостойкой резины. В качестве наполнителя используют распушенный асбест, графитный порошок, стальную фольгу, стальную проволоку или их сочетание. Композиционные прокладочные материалы наиболее универсальны, относительно дешевы, имеют большую долговечность.

Технические жидкости и газы

1) Смазочные материалы – вещества, обладающие смазочным действием, т.е. способностью снижать трение, уменьшать скорость изнашивания и устранять заедание трущихся поверхностей. Большинство смазочных материалов, за исключением твердых смазок (графит, сульфид молибдена и др.), являются жидкими.

2) К технологическим жидкостям относят: а) разделительные составы , предназначенные для снижения адгезии в контакте пресс-форм и литьевых форм с изделиями из резины и пластических масс, б) моющие жидкости (для промывки деталей и узлов машин в процессе их производства и ремонта), в) закалочные среды (приготовляемые на основе масел, водных растворов солей, водорастворимых полимеров).

3) Смазочно-охлаждающие жидкости (СОЖ) совмещают свойства смазочных масел и технологических жидкостей. Они одновременно смазывают поверхность инструмента и обрабатываемой детали, облегчая деформирование и улучшая качество получаемой поверхности, отводят теплоту, смывают стружку, пыль и другие загрязнения, а также защищают поверхность инструмента и деталей от коррозии. Вследствие многофункционального назначения СОЖ для их приготовления используют широкую номенклатуру масел, синтетических жидкостей, водных растворов, присадок и добавок.

4) Жидкие топлива – бензины, дизельные топлива, керосин и мазут, которые являются продуктами перегонки нефти. В машиностроении эти жидкости используют в качестве компонентов моющих жидкостей, СОЖ, растворителей и т.д.

5) При химико-термической обработке сталей применяют специальные газовые среды . Газы (азот, аммиак, аргон, ацетилен, водород, фреон , кислород, криптон и ксенон в электровакуумной технике для наполнения различных приборов, метан и пропан , углекислый ) и их смеси имеют широкое применение и в качестве топлив при газопламенной резке и закалке, плазмообразующих сред в процессах ионно-плазменной обработки, сварочных газов, хладагентов в холодильных установках и т.д.

6) Различные масла и синтетические жидкости, используемые в качестве рабочих тел в прессах, гидравлических передачах и приводах, вакуумных насосах, амортизаторах, тормозах и других устройствах . К ним относятся амортизационные жидкости, гидравлические масла, вакуумные масла, демпфирующие жидкости, приготовляемые в основном на базе минеральных масел и кремнийорганических жидкостей.

Абразивные материалы

(от латинского abrasio - соскабливание)– зернистые или порошкообразные вещества, предназначенные для оснащения рабочей части режущих инструментов.

Естественными абразивами являются: корунд, наждак, фанат, кремень, полевой шпат, пемза и др. В промышленности наиболее распространены искусственные абразивы: электрокорунд, карборунд и карбид бора.

Из порошков изготовляют шлифовальные круги различной формы, бруски, абразивные головки, сегменты, предназначенные для производства специальных абразивных инструментов.

КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ

– это материалы, состоящие из сильно различающихся по свойствам друг от друга, взаимно нерастворимых компонентов (из сравнительно пластичного матричного материала, который связывает композицию и придает ей нужную форму и более твердых и прочных веществ, являющихся упрочняющими наполнителями). Композиционные материалы используют для производства летательных аппаратов, в машиностроении, приборостроении, энергетике, в электронной, радиотехнической и электротехнической промышленности, а также на транспорте, в строительстве и других отраслях народного хозяйства.

В зависимости от материала матрицы различают композиционные материалы с металлической матрицей или металлические композиционные материалы (МКМ), с полимерной – полимерные композиционные материалы (ПКМ) и с керамической – керамические композиционные материалы (ККМ).

По типу упрочняющих наполнителей композиционные материалы подразделяют:

а) дисперсноупрочненные

б) армированные

или волокнистые

в) слоистые

В них искусственно вводят мельчайшие равномерно распределенные тугоплавкие частицы карбидов, оксидов, нитридов и другие, не взаимодействующие с матрицей и не растворяющиеся в ней вплоть до температуры плавления фаз

Арматурой в армированных композиционных материалах могут быть волокна различной формы (нити, ленты, сетки разного плетения). Их прочность определяется прочностью армирующих волокон, которые воспринимают основную нагрузку

Слоистые композиционные материалы набираются из чередующихся слоев волокон и листов матричного материала (типа «сэндвич»). Возможно поочередное использование слоев матрицы из сплавов с различными механическими свойствами

Применение резиновых изделий.

Виды резин.

Общие сведения о резине.

Тема 24. Резиновые и прокладочные материалы

Вопросы:

1. Резиной называют продукты химической переработки каучука и вулканизирующих веществ (сера, натрий), осуществляемой при помощи термической обработки (горячая вулканизация) или без неё (холодная вулканизация).

Основные свойства резины: эластичность, вибростойкость, повышенная химическая стойкость, газо- и водонепроницаемость, электроизоляционность.

Резиновые смеси составляют на основе каучука, массовое содержание которого в различных изделиях колеблется от 5 до 95 % смеси содержат также мягчители, наполнители, вулканизирующн вещества, противостарители, красители.

Исходные материалы для резиновых изделий. Каучук бываем натуральный и синтетический. Натуральный каучук получают из млечного сока каучукогенных растений. Синтетический каучук – вещество, по свойствам близкое к натуральному. Его получают путем синтеза органических веществ. Промышленные виды синтетического каучука, которых насчитывается несколько десятков, различают между собой как по исходному сырью и способам производства, так и по составу и физико-механическим свойствам. Производство син­тетического каучука складывается из двух основных процессом: получения каучукогенов (бутадиена, стирола, хлоропрена, акрилонитрила, изобутилена и др.) и их полимеризации в каучукоподобный продукт. Сырьем для получения каучукогеиов являются нефтепро­дукты, природный газ, ацетилен, древесина и др. При полимеризации каучукогены из низкомолекулярных веществ превращаются и высокомолекулярные соединения с типичными для натурального ка­учука физико-механическими и технологическими свойствами. Про­изводство синтетического каучука впервые в мире разработано рус­ским химиком С. В. Лебедевым.

Синтетические каучуки (СК) подразделяются на две основные группы: СК общего назначения, применяемые в производстве изде­лий, с наиболее характерным свойством резины - эластичностью (массовое производство шин, конвейерных лент, амортизаторов, уплотнителей, обуви, игрушек и т. д.) и СК специального назначения, которые наряду с эластичностью должны обладать специфическими свойствами. В качестве СК общего назначения применяют в основ­ном бутадиеновые и бутадиен-стирольные каучуки, в качестве бензо- и маслостойких – бутадиен-нитрильные, тепло- и морозостойких – кремнийорганические, износостойких – уретановые СК.

Мягчители (стеарин, олеиновая кислота) повышают пластичности сырой резины и мягкость резиновых изделий.

Наполнители повышают твердость и прочность резиновых изделий. К ним относятся сажа, оксид цинка, мел, каолин и др., а также рукавные и кордовые ткани и волокна (хлопчатобумажные, вискоз­ные, капроновые, нейлоновые), применяется также корд из стальных проволочек.

При вулканизации линейные макромолекулы каучука взаимодействуют с вулканизатором, в результате обра­зуется трехмерная (сшитая) сетка и каучук превра­щается в резину.

Основным вулканизирующим веществом для СК общего назна­чения, бутадиен-нитрильных и других каучуков является сера. Для вулканизации отформованные заготовки из сырой резины нагревают до температуры 140…180 °С; формование может совмещаться с нагревом.

Ускорители вулканизации (каптакс, тиурам и др.) вместе с окси­дом цинка не только сокращают время вулканизации, но и обеспечи­вают возможность вулканизации при комнатной температуре.

Для изготовления мягкой резины (автомобильные камеры, мячи) и каучук вводят 1…3 % серы; при массовом содержании серы 4…7 % получается твердая резина. Для вулканизации кремнийорганических СК применяют пероксиды бензоила, для уретановых – изоцианиды.

Противостарители (парафин, вазелин и др.) замедляют процесс окисления каучука, повышают устойчивость и сроки службы рези­новых изделий.

Изготовление резиновых изделий. Процесс складывается из при­готовления резиновых смесей, вулканизации и отделки изделий.

Смешивание компонентов обеспечивает равномерное распределе­ние в каучуке всех составных частей, оно производится на вальцах или в закрытых смесителях. Полученная сырая резина представляет собой однородную пластичную массу, которой легко придается нуж­ная форма.

Для получения листовой резины сырую резиновую смесь обраба­тывают на каландрах, рабочим органом которых являются пустоте­лые подогреваемые прокатные валки из отбеленного чугуна. На каландрах производится также обкладка тканей сырой резиной, сдавливание листов резины и промазанных резиной тканей, обра­ботка пропитанного корда. Из листовой заготовки при надобности производят раскрой на резательных машинах или вырубных прессах.

Резиновые профили (трубки, шнуры) получают шприцеванием – выдавливанием сырой резины на червячном прессе через матрицу Изделия сложной формы получают методами прессования и литья под давлением

Полученные полуфабрикаты подвергают вулканизации и от­делке. Плотность различных сортов резины от 0,9 до 2 г/см 3 , предел прочности при растяжении от 3 до 60 МПа, относительное удлинение 200…800 %. Следует подчеркнуть, что для каучуков и резины (а также для некоторых видов пластмасс и других материалов) характерна релаксация (ослабление) напряжений, которая возрастает с увеличением силы и скорости деформации и с повышением температуры.

2. Виды резин.

Резины подразделяются на следующие основные группы:

1) резины общего назначения (температуры эксплуатации от –50 до +150 °С) – могут работать в воде, воздухе, слабых растворах кислот и щелочей (шины, ремни, рукава, транспортные ленты, изоляция электрокабелей);

2)специальные резины:

а) теплостойкие резины – выдерживают температуру до 400°С;

б) морозостойкие резины – выдерживают температуру до –150 °С;

в) масло- и бензостойкие резины – работают в среде массе, топлива, бензина;

г) электротехнические резины – бывают диэлектрические и электропроводящие (состоят до 70 % из сажи и графита);

д) магнитные;

е) фрикционные и др.

3. В машиностроении резиновые изделия применяют для движущихся устройств (шин, приводных ремней, транспортных лент), в магистралях для транспортирования жидкостей, газов (напорные и всасывающие рукава, соединительные шланги, трубки), в каче­стве опор, буферов, изоляции, уплотнителей (сальники, манжеты, прокладочные пластины, кольца) и др.

4. Прокладочные материалы предназначены для создания герметичности сопрягаемых деталей с целью предохранения от попадания пыли, а также выте­кания смазки, газов и др. К прокладочным материалам относятся кожа, фибра, войлок, картон, паронит, клингерит, пробка, асбометаллические прокладки и кольца, фторопласт-4.

Техническую кожу применяют для изготовления ман­жет и уплотнительных прокладок для насосов, компрес­соров, прессов. Она хорошо сохраняется в среде бензина, масла, но имеет слабую химическую стойкость и повы­шенную способность к водопоглощению. В качестве за­менителей кожи используют дермантин (ткань, покрытая специальной пленкой) и фибру.

Фибру прокладочную (марки ФТ) получают из специ­альной бумаги (типа фильтровальной), обработанной концентрированным раствором хлористого цинка. Фибра идет на изготовление уплотнительных прокладок и шайб, а специальная электротехническая фибра используется в качестве изоляционного материала.

Войлок изготовляют уплотнением шерсти. Он имеет высокие теплоизоляционные свойства. Технический вой­лок применяют для изготовления сальников, прокладок между металлическими поверхностями, а также для мас­ляных фильтров.

Бумагу и картон изготовляют из дешевых сортов дре­весины. Их применяют в качестве электроизоляционных материалов и прокладок..

Паронит листовой материал, изготовленный из ас­беста, каучука и наполнителей. Применяют в виде уплот­нительных прокладок соединений в моторах, паропрово­дах, гидравлических установках и других механизмах, работающих при температуре до 450 °С.

Клингерит – листовой материал, изготовляемый из асбеста, смешанного с графитом, суриком, окисью желе­за и каучуком. Прокладки из клингерита используют в соединениях машин, работающих при температуре до 200 °С.

Пробка изготовляется из коры пробкового или бар­хатного дерева и применяется в качестве изоляционных прокладок и сальников в двигателях электроустановок.

Асбометаллические прокладки и кольца применяют для уплотнения соединений металлических поверхностей, работающих при температуре до 350°С и большом давлении (прокладки головки блока в двигателях внутреннего сгорания).

Фторопласт-4 применяют для изготовления уплотнительных прокладок, манжет, сильфонов.

Для изготовления прокладок применяются как неметаллические материалы, так и металлы. Металлические прокладки используются для ответственных объектов в тяжелых условий работы арматуры (высокой температуры, высокого давления и т. д.), но они требуют значительно больших усилий затяга соединения, чем мягкие прокладки.

Неметаллические материалы. Резина является наиболее пригодным материалом для уплотнения разъемных соединений. Она эластична, требует небольших усилий затяга уплотнений, практически непроницаема для жидкостей и газов. Резина применяется до температуры 50° С, а теплостойкая резина - до 140° С.

Для прокладок обычно применяется листовая техническая резина по ГОСТ 7338-65 без тканевых прослоек, так как при наличии прослоек иногда создается протечка среды через волокна прослойки. По твердости резину под¬разделяют на мягкую, средней твердости и твердую. Существует пять типов резины: маслобензостойкая (марки А, Б и В в зависимости от степени стойкости), кислотощелочестойкая, теплостойкая, морозостойкая и пищевая.

Прокладки из целлюлозного прокладочного картона широко используются в арматуре для пара низкого давления и воды при рабочей температуре tp < 120° С и рабочем давлении Pp до 0,6 МПа, для масла при tp < 80° С и Pр < 4 МПа и в других случаях. Применяется картон водонепроницаемый и прокладочный (пропитанный), последний используется и для нефтепродуктов при tр <= 85° С и рр < 0,6 МПа. Для картона допускается контактное давление не более 55 МПа. Для высоких температур целлюлозный картон не пригоден, так как обугливается.

Фибра листовая (ФЛАК) представляет собой бумагу или целлюлозу, обработанную хлористым цинком и затем каландрированную. Применяется для прокладок в арматуре при температуре до 100° С. Используется при работе на керосине, бензине, смазочном масле, кислороде и углекислоте. Коэффициент трения между фиброй и сухой сталью μ = 0,33.

Асбест в качестве прокладочного материала используется в арматуре при повышенных и высоких температурах. Материал минерального происхождения в технике используется после переработки в виде листового картона пли шнура. При 500° С прочность асбеста снижается на 33%, а при 600° С - на 77%. К щелочам асбест устойчив, к кислотам устойчив антофилит-асбест.

Асбестовый непропнтанный картон имеет рыхлое строение, низкую прочность, ио высокую жаростойкость, используется для арматуры, работающей при температуре до 600° С; задвижек для горячего дутья, генераторных и дымовых газов и для другой арматуры, не работающей на жидкости. Пропитанный натуральной олифой асбестовый картон может быть использован для нефтепродуктов при давлении до 0,6 МПа и температуре tp < 180° С, однако замена его при смене прокладок или ремонте арматуры затруднена, так как он прилипает к металлическим поверхностям. Для уплотнения средних фланцев газовых больших задвижек используется также асбестовый шнур, который укладывается спиралью на поверхности фланца, предварительно смазанной техническим вазелином. Кроме того, для прокладок используются специальные ткани с пряжей из мягкой латунной или никелевой проволоки. Изготовляют также комбинированные прокладки из колец различной формы и сечений, сердцевина которых выполняется из асбеста, а облицовка из тонкого металлического или пластмассового листа. Такие прокладки имеют хорошие эксплуатационные свойства, но сложны в изготовлении.

Листовой паронит (ГОСТ 481-71) изготовляется из смеси асбестовых волокон (60-70%), растворителя, каучука (12-15%), минеральных наполнителей (15-18%) и серы (1,5-2,0%) путем вулканизации и вальцевания под большим давлением. Теплостойкость паронита зависит от количества в нем резины.

Паронит является универсальным прокладочным материалом и используется в арматуре для насыщенного и перегретого пара, горячих газов и воздуха, растворов щелочей и слабых растворов кислот, аммиака, масел и нефтепродуктов при температуре до 450°С. Коэффициент трения паронита по металлу μ =0,5. Упругость паронита невелика. При контактном давлении свыше 32 МПа все неплотности в материале устраняются. Релаксация напряжений в период, ближайший после затяга, значительна. После обжатия при контактном давлении 70 МПа герметичность соединения сохраняется и при контактном давлении на прокладке, равном рабочему. Наибольшее допускаемое контактное давление на паронит 130 МПа, Чтобы улучшить герметичность соединения и увеличить сопротивление распору прокладки средой, на уплотнительных поверхностях соединения обычно создают две-три узкие канавки треугольного сечения, в которые паронит вдавливается под действием усилия затяга. Такие канавки делаются и при использовании других неметаллических прокладок. Листы паронита изготовляются толщиной до 6 мм. Прокладку целесообразно применять возможно более тонкую» но толщина ее должна быть достаточной для герметизации соединения при данной шероховатости обработанных поверхностей и площади уплотнения. Паронит листовой выпускается следующих марок: ПОН, ПМБ, ПА, ПЭ (см. табл. 4.29), ПС и ПСГ (последние две - специальные).

4.29. Условия применения паронита (по ГОСТ 481-71)

Обозна- Допустимая Допу-
чение и температура, стимое Область
наимено­вание давле­ние. применения
марок от до МПа
Вода пресная _ 250 6,4
Пар водяной 450 6,4
Воздух -50 + 100 1
Сухие нейтральные и инертные газы __ 450 6,4
Водные растворы -15 100 2,5
ПОН(паронит

назначения)

солей различной кон-
центрации
Аммиак жидкий -40 + 150 2,5
Спирты 150 1,6
Парафин 150 1,6
Тяжелые нефтепро­дукты 200 6,4
Легкие нефтепро­дукты 150 2,5
Жидкий кислород -182 0,25 Для уплотнения соединений типов:

«гладкие» с давле-

Вода морская 50 4

нием рабочей сре-

Рассолы -40 +50 10

ды не более

Аммиак жидкий и газообразный -40 + 150 2,5

4 МПа; «шип- паз»; «выступ-

Коксовый газ 490 6,4 впадина»
Воздух -50 200 1,6
Кислород и азот -182 0,25
ПМБ (паронит маслобензостойкий) жидкий
Сжиженные и га- -40 +60 1,6
зообразные углеводо-
роды С х -С 6
Кислород и азот — . 150 5
газообразные
Парафин 150 1,6
Расплав воска ___ 150 1
Легкие нефтепро­дукты 200 2,5
Тяжелые нефтепро- 300 2
дукты
Минеральные масла 150 2.5

Продолжение табл. 4.29

Обозна­чение и наимено­вание марок Среда Допустимая температура, Допу­стимое давле­ние, МПа Область применения
ПА (паронит, армиро­ванный сеткой) Вода пресная

Водяной пар

Воздух, нейтраль­ные и инертные сухие газы

Тяжелые нефтепро­дукты

Легкие нефтепро­дукты, минеральные масла

10 Для уплотнения соединений типов: «гладкие» с давле­нием рабочей сре­ды не более 4 МПА; «шип- паз»; «выступ — впадина*
ПЭ Щелочи с концен­трацией 300-400 г/л, водород, кислород

Аммиак жидкий и газообразный

Азотная кислота, (10%-ный раствор)

Нитрозные газы

2,5 Электролизеры, арматура и др. Минимальное кон­тактное давление, необходимое для герметизации 10 МПа для со­единений, рабо­тающих под дав­лением 0,02 МПа, и 30 МПа для со­единений, рабо­тающих под дав­лением 1 МПа
Примечание.

Применение паронита в случаях, не предусмотренных данной таблицей, допускается после проведения промышленных испытаний и согласования ре­зультатов с отраслевым научно-исследовательским институтом Министерства нефтеперерабатывающей и нефтехимической промышленности СССР.

Паронит марок ПОН и ПА испытывается на уплотнительную способность в среде пара при температуре 450° С и давлении 10 МПа. Прокладка наружным диаметром 120 мм и внутренним 80 мм, смазанная маслографитовой пастой, должна при контактном давлении 22,5 МПа сохранять герметичность в течение 30 мин. Кроме того, паронит этих марок, а также марки ПМБ испытывается на уплотняющую способность в керосине при температуре 20° С и давлении 15 МПа. Прокладка наружным диаметром 120 мм и внутренним 80 мм, смазанная маслографитовой пастой, при контактном давлении 32,4 МПа должна сохранять герметичность в течение 30 мин.

Паронит специальной марки ПС предназначен для этилового спирта, жидкого кислорода, масла Л-1 и воздуха. Применяется для давлений до 7,5 МПа при рабочей температуре от -182 до +400° С в зависимости от типа соединения и рабочей среды. Паронит марки ПСГ (паронит специальный графитированный) предназначается для этилового спирта, водяного пара и парогаза. Применяется для давлений до 7,5 МПа при рабочей температуре до 450° С (для спирта - до 50° С). Листы паронита имеют размеры от 0,3 X 0,4 до 1,5 X 3,0 м, толщина листов паронита марки ПОН - от 0,4 до 6,0 мм. Каждая марка паронита имеет свой диапазон размеров и толщин.

Пластмассы для прокладок арматуры применяются при невысоких темпе­ратурах среды. Пластикат поливинилхлоридный по эластичности наиболее близко подходит к резине, используется для арматуры в химических производствах при сравнительно узком интервале температур (от -15 до 4-40° С). Полиэтилен в ка­честве прокладок может использоваться при температуры среды от -60 до +50° С. Фторопласт-4 и фторопластовый уплотнительный материал (ФУМ), выпускаемый в виде шнуров различных профилей и сечений, применяются для температур от -195до +200°С. Винипласт как прокладочный материал используется ограни­ченно.

Металлические материалы. Металлические прокладки изготовляются в виде плоских колец прямоугольного сечения из листового материала или в виде колец фасонного сечения из труб или поковок. К последним относятся линзовые прокладки чечевичного сечения, прокладки сечением в виде овала, расположен­ного параллельно оси прокладки, и гребенчатые прокладки, имеющие сечение прямоугольника с треугольными выступами в виде гребенки. Помимо этого из­готовляются комбинированные прокладки, состоящие из мягкой сердцевины (асбеста или паронита), облицованной листовым материалом из алюминия, малоуглеродистой стали или коррозионностойкой стали 08Х18Н10Т или 12Х18Н10Т. Достоинства металлических прокладок: достаточная плотность при высоких давлениях и температурах среды, коэффициент температурного расширения близок к коэффициенту температурного расширения материала фланца и шпилек или болтов, возможность повторного использования после соответствующего ремонта. К недостаткам следует отнести: необходимость создания больших усилий для обеспечения герметичности соединения, относительно низкие упругие свойства, значительную релаксацию напряжений и относительно высокую сто¬имость изготовления. В табл. 4.30 приведены некоторые сведения о металлах, применяемых для изготовления прокладок арматуры.

4.30. Металлы, применяемые для изготовления прокладок

Допустимая

Наимено- Марка Среда

температура, *С

вание
от до
Сталь низ- 05кп (особая) Водяной пар «я.
коуглеро-
дистая ти-
па Армко
То же 05кп (особая) Щелочи, кислоты, гнзы, содержащие оеру. Не применяет­ся для водных рас­творов кислот и ше лочей -70
Сталь 0,5; 0,8 Водяной пар, неф­тепродукты -40
Коррозион- 12Х18Н10Т» Водяной пар, неф- -253
ностойкая 08Х18Н10Т тепродукты, корро-
сталь зионные среды, кро­ме серной кислоты
Алюминий АО; А; АД1 Воздух, вода, неф­тепродукты, азот­ная, фосфорная и другие кислоты, су­хой хлор, сернистые газы -253
Никель НП1, НВК Водяной пар, хлор и др.; нейтральные среды -200
Монель- НМЖМо.28-2,5-1,5 Морская вода.
металл коррозионные сре­ды, водяной пар
Медь М1.М2 Криогенные и другие нейтраль­ные среды -253
Свинец С2 Коррозионные среды, в том числе серная -200

Набивочные материалы

Материалы для сальниковой набивки (табл. 4.31) должны иметь высокую упругость, физическую стойкость при рабочей температуре, химическую стой¬кость против действия рабочей среды и возможно малый коэффициент трения. В качестве набивочных материалов в основном применяются: хлопчатобумажные материалы, пенька, асбестовый шнур, асбест, графит, тальк, стекловолокно и фторопласт. Наиболее часто используется асбест в виде плетеного шнура квадратного или круглого сечения, но могут быть использованы и скатанные шнуры без плетения или чесания волокна (пенька и др.). Наиболее целесообразно применение набивки из заранее приготовленных и отформованных колец.

4.31. Основные материалы для сальниковой набивки (с учетом ГОСТ 5152 66)

Допустимая Допу-
температура стимое

давление,

Набивка Рабочая среда
до
Плетеные хлопчатобумажные
ХБС (сухая) Воздух; питьевая вода, спирты, пишеоые продукты, смазочные мчсла, органиче­ские растворители, углеводо­роды, нейтральные растворы солей 100 20
ХБС (сухая) Жидкий и газообразный ам­миак -40
ХБП (пропитан- Воздух, промышленная во- 100 20
ная) да, нефтяное топливо, смазоч­ные масла, инертные газы и пары, углеводороды

Плетеные пеньковые

ПС (сухая) Воздух, промышленная во­да, водяной пар, смазочные масла, нефтяное топливо свет­лое, углеводороды 100 16
ПС (сухая) Жидкий и газообразный азот -40
ПП (пропитанная) Воздух, промышленная по­да, топливо нефтяное темное, смазочные масла, инертные пары и газы, углеводороды, растворы щелочей, соленая вода 100 16

Продолжение табл. 4.31

Продолжение табл. 4.31



Новое на сайте

>

Самое популярное