Домой Дизайн Подводные лодки на атомной энергии. Подводные лодки

Подводные лодки на атомной энергии. Подводные лодки

На заре подводного судостроения, когда шел поиск оптимальных двигателей для субмарин, конструкторы экспериментировали, в том числе, с паросиловыми установками.

После того как в 1930-х годах дизель-электрические подлодки уже перешагнули 20-узловой рубеж, казалось, эра «паровых» субмарин завершилась навсегда. Но прошло всего полтора десятилетия, и о них вновь вспомнили. Разница состояла лишь в том, что пар для турбины должен вырабатывать не привычный котел, сжигающий органическое топливо, а котел атомный.

ФИЗИЧЕСКИЕ ПРИНЦИПЫ РАБОТЫ

В основе работы ядерной энергетической установки лежит управляемая цепная ядерная реакция. Эта реакция представляет собой самоподдерживающийся процесс деления ядер изотопов урана (или делящихся изотопов других элементов) под действием элементарных частиц — нейтронов, которые благодаря отсутствию электрического заряда легко проникают в атомные ядра. При делении ядер образуются новые, более легкие ядра — осколки деления, испускаются нейтроны и освобождается большое количество энергии. Так, деление каждого ядра урана-235 сопровождается освобождением приблизительно 200 мегаэлектроновольт энергии. Из них примерно 83 % приходится на долю кинетической энергии осколков деления, которая в результате торможения осколков преобразуется в основном в тепловую энергию. Остальные 17 % ядерной энергии освобождаются в виде энергии свободных нейтронов и различных видов радиоактивного излучения. Вновь образованные нейтроны в свою очередь участвуют в делении других ядер.

ПЕРВЫЕ ШАГИ

Проработка вопросов создания ядерных силовых установок для подводных лодок началась в США в 1944 году, а уже через четыре года первая из них была спроектирована. Там же в июне 1952 года состоялась закладка первой атомной подводной лодки, получившей имя «Наутилус». На первый взгляд она была само воплощение человеческой мечты об истинной подводной лодке. Действительно, где, как только не в мечтах, можно было себе представить подводный корабль длиной почти 100 м способный более месяца, не всплывая, ходить скоростью более 20 узлов. Но, как это часто бывает, ощутимый качественный скачок в одной области технического прогресса повлек за собой целый букет сопутствующих проблем в смежных. Применительно к атомным силовым установкам — это прежде всего вопросы, связанные с ядерной безопасностью их эксплуатации и последующей утилизацией. Но в начале 1950-х годов об этом просто никто не задумывался.

ОБЩАЯ КОНСТРУКЦИЯ

Основной элемент ядерных энергетических установок — ядерный реактор — специальное устройство, в котором происходит управляемая цепная ядерная реакция. В его состав входят активная зона, отражатель нейтронов, стержни управления и защиты, биологическая защита реактора. Активная зона реактора содержит в себе ядерное горючее и замедлитель нейтронов. В ней протекает управляемая реакция цепного деления ядерного горючего. Ядерное топливо размещается внутри так называемых тепловыделяющих элементов (ТВЭЛ), которые имеют форму цилиндров, стержней, пластин или трубчатых конструкций. Эти элементы образуют решетку, свободное пространство которой заполняется замедлителем. Основными материалами для оболочек тепловыделяющих элементов служат алюминий и цирконий. Нержавеющая сталь применяется в ограниченных количествах и только в реакторах на обогащенном уране, так как сильно поглощает тепловые нейтроны. Для отвода тепла через активную зону прокачивается жидкий теплоноситель.

В энергетических реакторах водо-водяного типа как замедлителем, так и теплоносителем систем является бидистиллят (дважды дистиллированная вода).

Чтобы сделать цепную реакцию возможной, размеры активной зоны реактора должны быть не меньше так называемых критических размеров, при которых эффективный коэффициент размножения равен единице. Критические размеры активной зоны зависят от изотопного состава делящегося вещества (уменьшаются с увеличением обогащения ядерного топлива ураном-235), от количества материалов, поглощающих нейтроны, вида и количества замедлителя, формы активной зоны и т. д. На практике размеры активной зоны назначаются больше критических, чтобы реактор располагал необходимым для нормальной работы запасом реактивности, который постоянно уменьшается и к концу кампании реактора становится равным нулю. Отражатель нейтронов, окружающий активную зону, должен сокращать утечку нейтронов. Он уменьшает критические размеры активной зоны, повышает равномерность нейтронного потока, увеличивает удельную мощность реактора, следовательно, уменьшает размеры реактора и обеспечивает экономию делящихся материалов. Обычно отражатель выполняется из графита, тяжелой воды или бериллия. Стержни управления и защиты содержат в себе материалы, интенсивно поглощающие нейтроны (например, бор, кадмий, гафний). К стержням управления и защиты относятся компенсирующие, регулирующие и аварийные стержни.

ОСНОВНЫЕ РАЗНОВИДНОСТИ

«Наутилус» имел силовую установку с водо-водяным реактором под давлением. Такие реакторы применены и на подавляющем большинстве других атомных субмарин.

В современных атомных установках ядерная энергия превращается в механическую только посредством тепловых циклов. Во всех механических установках атомных подводных лодок рабочим телом цикла является пар. Паровой цикл с промежуточным теплоносителем, передающим теплоту из активной зоны рабочему телу в парогенераторах, приводит к двухконтурной тепловой схеме энергетической установки. Такая тепловая схема с водо-водяным реактором получила самое широкое распространение на атомных подводных лодках. Первому контуру необходима защита, так как при прокачке теплоносителя через активную зону реактора содержащийся в воде кислород становится радиоактивным. Весь второй контур нерадиоактивен.

Для того чтобы получить во втором контуре пар заданных параметров, вода первого контура должна иметь достаточно высокую температуру, превышающую таковую производимого пара. Для исключения вскипания воды в первом контуре в нем необходимо поддерживать соответствующее избыточное давление, обеспечивающее так называемый «недогрев до кипения». Так, в первом контуре зарубежных корабельных ядерных силовых установок поддерживается давление 140-180 атмосфер, которое позволяет нагревать воду контура до 250-280° С. При этом во втором контуре генерируется насыщенный пар давлением 15-20 атмосфер при температуре 200-250° С. На советских подводных лодках первого поколения температура воды в первом контуре составляла 200° С, а параметры пара — 36 атмосфер и 335° С.

С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ

В 1957 году в состав ВМС США вошла вторая атомная подводная лодка «Сивулф». Ее принципиальное отличие от «Наутилуса» заключалось в ядерной силовой установке, где применялся реактор с натрием в качестве теплоносителя. Теоретически это должно было снизить удельную массу установки за счет снижения веса биологической защиты, а главное — повышения параметров пара. Температура плавления натрия, составляющая всего 98° С, и высокая температура кипения — более 800° С, а также отличная теплопроводность, в которой натрий уступает только серебру, меди, золоту и алюминию, делает его очень привлекательным для использования в качестве теплоносителя. Нагревая жидкий натрий в реакторе до высокой температуры, при относительно небольшом давлении в первом контуре — порядка 6 атмосфер, во втором контуре получали пар давлением 40-48 атмосфер с температурой перегрева 410-420°С.

Практика показала, что, несмотря на все преимущества, ядерный реактор с жидкометаллическим теплоносителем обладает рядом существенных недостатков. Чтобы сохранить натрий в расплавленном состоянии, в том числе и в период бездействия установки, на корабле необходимо иметь специальную постоянно действующую систему подогрева жидкометаллического теплоносителя и обеспечения его циркуляции. В противном случае натрий и сплав промежуточного контура «замерзнут» и энергетическая установка будет выведена из строя. В ходе эксплуатации «Сивулфа» обнаружилось, что жидкий натрий химически чрезмерно агрессивен, в результате чего трубопроводы первого контура и парогенератор быстро коррозировали, вплоть до появления свищей. А это очень опасно, так как натрий или его сплав с калием бурно реагируют с водой вплоть до теплового взрыва. Утечка радиоактивного натрия из контура вынудила сначала отключить пароперегревательные секции парогенератора, что привело к снижению мощности установки до 80 %, а потом, через год с небольшим после вступления в строй, и вообще вывести корабль из состава флота. Опыт «Сивулфа» заставил американских военных моряков окончательно сделать выбор в пользу водо-водяных реакторов. А вот в СССР эксперименты с жидкометаллическим теплоносителем продолжались гораздо дольше. Вместо натрия применялся сплав свинца с висмутом — гораздо менее пожаро- и взрывоопасный. В 1963 году вступает в строй подлодка проекта 645 с таким реактором (по сути — модификация первых советских атомных субмарин проекта 627, на которых применялись водо-водяные реакторы).

А в 1970-е годы состав флота пополнили семь подлодок проекта 705 с ядерной силовой установкой на жидкометаллическим носителе и титановым корпусом. Эти субмарины обладали уникальными характеристиками — они могли развивать скорость до 41 узла и погружаться на глубину 700 м. Но эксплуатация их была чрезвычайно дорогой, из-за чего лодки этого проекта прозвали «золотыми рыбками». В дальнейшем ни в СССР, ни в других странах реакторы с жидкометаллическим теплоносителем не применялись, а повсеместно принятыми стали водо-водяные реакторы.

В 1944 году руководитель «Манхэттенского проекта» (американской атомной программы) генерал Лесли Гроувз создал небольшую рабочую группу для исследования возможностей «неразрушительного применения» ядерной энергии.

Тем самым была начата работа по созданию атомных силовых установок для кораблей. В силу независимости атомной силовой установки от атмосферного воздуха приоритетной областью ее применения стал подводный флот. Использование таких установок на субмаринах позволяло радикально повысить автономность и скрытность — ведь теперь подлодке не надо было всплывать для подзарядки аккумуляторов.

Теоретические исследования показали практическую осуществимость постройки ядерной корабельной силовой установки. Их результаты представили конгрессу в специальном докладе в 1951 году, после чего законодатели выделили необходимые средства. Это позволило флоту подписать контракты с фирмами «Электрик Боут», «Вестингауз Электрик» и «Комбастинг Инжиниринг» на разработку проекта субмарины и атомного реактора к ней. Для последнего выбрали схему с охлаждением водой под давлением (PWR) — как показал дальнейший опыт, наиболее безопасную и простую в эксплуатации. Наземный прототип реактора получил обозначение S1W, а образец, предназначенный для установки на субмарину, — S2W. Буква «S» означала, что реактор предназначен для подводной лодки (реакторы для авианосцев обозначаются буквой «А», а для крейсеров — «С»), a «W» указывала на фирму-разработчика «Вестингауз».

Проектирование и постройка подлодки велись очень быстро. Уже 14 июня 1952 года на верфи «Электрик Боут» в Гротоне (штат Коннектикут) в присутствии президента США Гарри Трумэна состоялась закладка первой атомной субмарины, а 21 января 1954 года лодку спустили на воду. Крестной матерью корабля стала Мэми Эйзенхауэр — жена президента США Дуайта Эйзенхауэра. Лодка, получившая название «Наутилус» и бортовой номер SSN-571, была официально принята в состав флота 30 января 1954 года. Но еще три месяца она оставалась у причала верфи, поскольку ряд важных работ не был завершен. 30 декабря состоялся пуск реактора. 17 января 1955 года «Наутилус» наконец отошел от причала. Командир субмарины коммандер Юджин П. Уилкинсон передал исторический сигнал: «Иду под ядерным двигателем».

ОСОБЕННОСТИ КОНСТРУКЦИИ

Для своего времени «Наутилус» имел значительные размеры: по проекту его подводное водоизмещение достигало 3,5 тыс. т, а длина составляла 98,7 м. Он превосходил новейшие американские дизель-электрические подлодки типа «Тэнг» по водоизмещению на 50 %, а по длине на 15,2 м. Очертания корпуса «Наутилуса» базировались на немецком проекте XXI (времен Второй мировой войны). Большой диаметр корпуса (8,5 м) позволил организовать на большей части длины корпуса три палубы и создать достаточно комфортные условия для экипажа, состоявшего из 12 офицеров и 90 старшин и матросов. Офицеры размещались в каютах (правда, только командир — в одноместной). Каждый из рядового состава имел персональную койку (на дизель-электрических подлодках, как правило, число коек было меньшим, чем численность экипажа, — с учетом того, что часть личного состава постоянно находилась на вахте). Офицерская кают-компания могла одновременно поместить всех офицеров. В кают-компании рядового состава могли одновременно принимать пищу 36 человек, а в качестве кинозала она вмещала до 50 человек. Вооружение «Наутилуса» состояло из шести носовых торпедных аппаратов с боекомплектом 26 торпед. Первоначальным проектом было предусмотрено вооружить лодку крылатыми ракетами «Регулус» (со стартом из надводного положения), но ввиду значительного увеличения массы биологической защиты реактора от этого пришлось отказаться. Основными средствами освещения обстановки были две гидроакустические станции — пассивная AN/BQR-4A (с большой цилиндрической антенной в носовой части лодки) и активная AN/SQS-4.

СИЛОВАЯ УСТАНОВКА

На «Наутилусе» применили однореакторную двухвальную главную энергетическую установку. Корпус реактора S2W весил около 35 т, имел форму цилиндра со сферической крышкой и полусферическим днищем. Высота его составляла 3 м, диаметр 2,7 м. Корпус реактора крепили в вертикальном положении на основание цистерны водяной защиты, которая в свою очередь крепилась на фундаменте в трюме реакторного отсека. Вместе с водяной и композитной защитой высота реактора составляла около 6 м, а диаметр 4,6 м. Активная зона реактора цилиндрической формы диаметром около 1 м. Общий вес загрузки реактора — около 100 кг. Пар, вырабатываемый в результате охлаждения реактора, питал две паровые турбины. Для аварийных случаев и прибережного маневрирования на субмарине имелись два дизель-генератора.

ИСТОРИЯ СЛУЖБЫ

Первые же испытания атомной субмарины «Наутилус» дали ошеломляющие результаты: лодка в подводном положении преодолела дистанцию между базами подводного флота Нью-Лондон и Сан-Хуан за 90 часов.

За это время «Наутилус» прошел 1381 морскую милю (2559 км) со средней скоростью 15,3 узла. Дизель-электрические субмарины в то время были способны преодолеть под водой от силы 200 миль со скоростью 4-5 узлов.

В последующих рейсах «Наутилус» демонстрировал среднюю путевую скорость, близкую к максимальной — показатель, о котором ранее подводники могли только мечтать. Субмарина оказалась способной обогнать противолодочные торпеды, состоящие в то время на вооружении ВМС США! Отличной оказалась и маневренность подлодки.

Однако испытания показали и существенные недостатки лодки, прежде всего — высокий уровень шумов. Главной его причиной стала отнюдь не силовая установка, а вибрация конструкции корабля, вызванная возмущениями обтекания воды за ограждением рубки. В случае превышения частоты этих колебаний 180 в минуту возникала реальная угроза серьезных повреждений конструкции лодки. Высокая шумность существенно снижала боевую ценность «Наутилуса»: при скорости свыше 4 узлов эффективность сонаров становилась нулевой — лодка попросту «глушила» их собственным шумом. Если же скорость превышала 15 узлов, находящейся в центральном посту смене приходилось кричать, чтобы услышать друг друга. Позже субмарину подвергли модификациям, несколько снявшим остроту проблемы шумности. Но в течение всей своей 35-летней службы «Наутилус» оставался по сути опытовым кораблем, а не боевой единицей,

К СЕВЕРНОМУ ПОЛЮСУ

Исключительные возможности ядерной силовой установки позволили реализовать амбициозную задачу — достичь Северного полюса в подводном положении. Однако первая попытка, предпринятая в августе 1957 года, оказалась неудачной. Зайдя под паковые льды, «Наутилус» попытался всплыть в точке, где эхоледомер показал полынью, но напоролся на дрейфующую льдину, серьезно повредив единственный перископ. Лодке пришлось возвратиться. Год спустя была предпринята вторая попытка, оказавшаяся успешной — 3 августа 1958 года «Наутилус» проплыл под Северным полюсом. Событие это произошло во время трансарктического рейса субмарины из Перл-Харбора (Гавайи) в Лондон, подтвердившего возможность маневра атомных подводных лодок между Тихим и Атлантическим океанами через Арктику. Поскольку обычные средства навигации в приполярных акваториях малопригодны, «Наутилус» оборудовали инерциальной навигационной системой «Норт Американ» N6A-1 — корабельным вариантом системы, применявшейся на межконтинентальных крылатых ракетах «Навахо». Весь рейс подо льдом занял четверо суток (96 часов), в течение которых лодка преодолела 1590 миль, всплыв на поверхность северо-восточнее Гренландии.

«Наутилус» стал первой субмариной, достигшей Северного полюса в подводном положении. Первой же лодкой, всплывшей на Северном полюсе, стала другая американская АПЛ — «Скейт». После возвращения из рейса «Наутилус» посетил Нью-Йорк. И если на Северном полюсе после него побывали многие подлодки, то вот в Нью-Йоркский порт больше ни одна атомная субмарина не заходила.

ДАЛЬНЕЙШАЯ СЛУЖБА

Большую часть активной службы «Наутилус» провел в составе 10-й эскадры подлодок, базировавшейся в Нью-Лондоне. Подлодка участвовала в обеспечении боевой подготовки Атлантического флота США и военно-морских сил союзников по НАТО. Участие в маневрах в условиях, приближенных к боевым, порой приводило к весьма опасным инцидентам. Наиболее опасный из них имел место 10 ноября 1966 года, когда «Наутилус», маневрируя на перископной глубине, столкнулся с противолодочным авианосцем «Эссекс» (CVS-9). Авианосец получил пробоину, но остался на плаву. Субмарина же серьезно повредила рубку, но хода не лишилась и смогла добраться до базы. За время службы на «Наутилусе» трижды перезаряжали активную зону реактора: в 1957-м, 1959-ми 1967 годах. В общей сложности лодка прошла более 490 тыс. миль. Интенсивность ее эксплуатации в начальный период службы была гораздо выше. Если за первые два года субмарина преодолела 62,5 тыс. миль (из них более 36 тыс. — в подводном положении), а за последующие два — более 91 тыс., то с 1959 до 1967 года (восемь лет) она про шла 174,5 тыс. миль, а за 12 лет с 1967 до 1979-го — 162,3 тысячи. 3 марта 1980 года «Наутилус» был выведен из боевого состава. Предполагалось его утилизировать, но вскоре решили сохранить первую американскую атомную субмарину в качестве музея. После соответствующей подготовки и вырезки из корпуса реакторного отсека «Наутилус» 11 апреля 1986 года открыли для посетителей. Лодка, имеющая статус национального памятника техники, находится в Гротоне.

Возможно вам будет интересно:



Подводные лодки составляют основной костяк морского вооружения России. Они способны выполнять ряд стратегически важных задач. Их используют для уничтожения вражеских кораблей, различных подводных и надводных объектов, а также поражения целей в прибрежной акватории противника. К тому же они способны незаметно выполнять боевые задания и покидать места временной дислокации. Считается, что подводные флоты Российской Федерации и США являются самыми сильными, и эти державы делят пальму первенства в господстве над Мировым океаном.

Как зарождался атомный подводный флот

В середине прошлого столетия, в 1954 году, на воду был спущен «Наутилус», который считается первой атомной подлодкой, выпущенной США. Разработки подводного судна типа SSN 571 велись с 1946-го, и уже в 1949 году началось его строительство. Основой для конструкции послужила немецкая военная подлодка 27-й серии, конструкцию которой американцы изменили до неузнаваемости и установили в ней атомную энергоустановку. До начала 1960 года был налажен выпуск первых АПЛ проекта EB 253-A, более известных как субмарины «Скейт».

Спустя всего лишь 5 лет, в начале 1959 года, появился проект 627, ставший первой атомной подлодкой Советского Союза. Ее сразу же приняли на вооружение ВМФ. Вскоре после этого советскими конструкторами был разработан проект 667-A, который изначально задумывался для применения в качестве подводного крейсера-ракетоносца для выполнения стратегических задач (РПКСН). Собственно, принятие 667-х на вооружение в качестве боевых единиц принято считать началом развития II поколения атомных подлодок СССР.

В 1970 г прошлого столетия в Союзе был принят и одобрен проект 667-Б. Это была АПЛ, носившая название «Мурена». Она была оснащена мощным морским БРК (ракетный баллистический комплекс) «Д-9» межконтинентального использования. Вслед за этой подлодкой появилась «Мурена-М» (проект 667-БД), а уже в 1976 г советский флот получил на вооружение первую серию подводных ракетоносцев ─ проект 667-БДР. Они вооружались ракетами, которые имели разделяющиеся боеголовки.

Дальнейшее развитие подлодок стран-лидеров осуществлялось таким образом, что в основу конструкции легли бесшумные гребные винты и некоторые изменения в корпусе. Так, в 1980 г. появилась первая подлодка ударного типа, которая стала проектом 949 III поколения. Для выполнения ряда стратегических задач на ней использовались торпеды, а также крылатые ракеты.

Немногим позже появился проект 667-АТ, флагманом которого стала атомная подлодка К423. Ее приняли в 1986 г. на вооружение советского флота. Также стоит отметить, что этому проекту удалось дожить до наших дней. Как и другие атомные подводные лодки России, в число действующих боевых единиц флота входит модель К395 проекта 667.

Нельзя не отметить и созданные в 1977 г. советские подлодки. Они стали модификацией проекта 667 ─ 671 РТМ, которых до конца 1991 г. было построено 26 единиц. Вскоре после этого были созданы первые отечественные многоцелевые АПЛ, корпус которых был изготовлен из титана ─ "Барс-971" и 945, известные как «Барракуда».

Полста ─ много или мало?

На вооружении подводного флота РФ числится 76 единиц подлодок различного класса, среди которых РПКСН, АМПЛ (многоцелевые), дизельные, а также суда спецназначения. На вопрос о том, сколько атомных подводных лодок в России, можно ответить таким образом: их 47 единиц. Необходимо отметить, что это очень большое количество, поскольку постройка одной АПЛ обходится сегодня государству свыше 1 миллиарда долларов. Если учитывать суда, находящиеся на переоснащении и в судоремонтных вервях, то количество атомных подводных лодок в России будет равно 49. Для сравнения приведем некоторые данные о подлодках, стоящих на вооружении сверхдержав. Американский подводный флот насчитывает 71 боевую единицу подлодок, а у Великобритании и Франции их числится по 10 единиц.

Атомные тяжелые крейсеры-ракетоносцы

Наиболее крупными и опасными с точки зрения поражения вражеской силы и разрушающей способности считаются тяжелые ракетоносцы. Такие атомные подводные лодки России на вооружении находятся в количестве 3 единиц. Среди них и ракетоносец «Дмитрий Донской» (тяжелый крейсер ТК208), а также «Владимир Мономах». Они были построены по проекту 945. Их вооружение представлено ракетной системой «Булава».

Крейсер ТК-17 типа «Акула», являющийся составной частью проекта 941УМ, находится на вооружении подводного флота и именуется «Архангельском». Лодка ТК-20 имеет название «Северсталь», и она была также построена по этому проекту. Одной из причин вывода их из строя является нехватка баллистических ракет P-39. Отметим также, что эти суда являются одними из самых больших в мире, а их общее водоизмещение составляет около 50 тыс. тонн.

В начале 2013 г. на АПЛ К-535 (проект 955 «Борей»), получившей имя Юрия Долгорукого, был поднят флаг. Эта подлодка стала головным подводным ракетным крейсером Северного флота. Не прошло и года, как уже в декабре Тихоокеанский флот получил на вооружение К-550. Эта АПЛ носит имя Александра Невского. Все лодки представляют собой стратегические ракетоносцы IV поколения.

Стратегические атомные подлодки «Дельфин»

Проект 667-БДРМ представляют атомные подводные лодки ВМФ России в количестве 6 единиц:

  • «Брянск» ─ К117;
  • «Верхотурье» ─ К51;
  • «Екатеринбург» ─ К84;
  • «Карелия» ─ К118;
  • «Новомосковск» ─ К407;
  • «Тула» ─ К114.

В середине 1999 г. атомный крейсер К64 перестал быть действующей единицей ВМФ и его сняли с вооружения. Все атомные подводные лодки России (фото некоторых можно увидеть выше), входящие в состав проекта, состоят на вооружении Северного МФ.

Проект 667-БДР. Атомные лодки «Кальмар»

По своему количеству в составе ВМФ современные атомные подводные лодки России класса «Кальмар» идут сразу за «Дельфинами». Строительство лодок по проекту 667БДР началось еще до начала 1980 г в СССР, поэтому большая часть АПЛ уже списана и пришла в негодность. На сегодняшний день на вооружении российского флота имеется лишь 3 единицы таких подводных крейсеров:

  • «Рязань» ─ К44;
  • «Святой Георгий Победоносец» ─ К433;
  • «Подольск» ─ К223.

Все субмарины состоят на вооружении Тихоокеанского флота РФ. Самой «молодой» из них считается «Рязань», поскольку ее пустили в эксплуатацию позже остальных, в конце 1982 г.

АПЛ многоцелевого назначения

Многоцелевые атомные подводные лодки России, которые были собраны согласно проекту 971, считаются самыми многочисленными в своем классе («Щука-Б»). Они способны уничтожать цели в прибрежной акватории, на берегу, а также поражать подводные сооружения и объекты, находящиеся на поверхности воды. Северный и Тихоокеанский флоты имеют на своем вооружении 11 АПЛ этого типа. Однако 3 из них по различным причинам больше не будут эксплуатироваться. Например, АПЛ «Акула» не используется вообще, а «Барнаул» и «Барс» уже переданы в утилизацию. Подлодка «Нерпа» К152 с 2012 г по контракту была продана в Индию. Позже ее передали на вооружение индийскому ВМФ.

Проект 949А. Многоцелевые АПЛ «Антей»

Атомные подводные лодки России проекта 949А присутствуют в количестве 3 единиц и входят в состав Северного флота. 5 АПЛ «Антей» стоят на вооружении флота Тихого океана. Когда задумывалась эта субмарина, то предполагалось ввести в эксплуатацию 18 единиц. Однако дефицит финансирования дал о себе знать, поэтому их было спущено на воду всего лишь 11.

Сегодня атомные подводные лодки России класса «Антей» находятся на вооружении флота в количестве 8 боевых единиц. Несколько лет назад субмарины «Красноярск» К173 и «Краснодар» К178 были отправлены на разборку и утилизировались. 12.09.2000 г в акватории Баренцева моря произошла трагедия, унесшая жизнь 118 российских моряков. В этот день затонул АПРК проекта «Антей» 949А «Курск» К141.

АПЛ «Кондор», «Барракуда» и «Щука» многоцелевого использования

С начала 80-х до 90-х годов были построены 4 лодки, которые являлись проектами 945 и 945А. Они получили названия «Барракуда» и «Кондор». Согласно 945 проекту, были построены атомные подводные лодки России «Кострома» Б276 и «Карп» Б239. Что касается проекта 945А, то по нему были созданы «Нижний Новгород» Б534, а также «Псков» Б336, изначально поставленные на вооружение Северного флота. Все 4 субмарины несут службу по сей день.

Также на вооружении имеется 4 подлодки многоцелевого проекта «Щука» 671РТМК, среди которых:

  • «Обнинск» ─ Б138;
  • «Петрозаводск» ─ Б338;
  • «Тамбов» ─ Б448;
  • «Даниил Московский» ─ Б414.

Министерство обороны планирует списать эти лодки и заменить их боевыми единицам совершенно нового класса.

АПЛ 885 типа «Ясень»

На сегодняшний день ПЛАРК «Северодвинск» является единственной действующей подлодкой этого класса. 17 июня прошлого года на К-560 состоялось торжественное поднятие флага. В течение ближайших 5 лет планируется создать и спустить на воду еще 7 таких судов. Уже полным ходом идет постройка подлодок «Казань», «Красноярск» и «Новосибирск». Если «Северодвинск» является проектом 885, то остальные лодки будут созданы по проекту улучшенной модификации 885М.

Что касается вооружения, то АПЛ «Ясень» будут оснащаться сверхзвуковыми крылатыми ракетами типа «Калибр». Дальность стрельбы этих ракет может составлять 2.5 тыс. км,и они представляют собой высокоточные снаряды, основной задачей которых будет уничтожение вражеских авианосцев. Также планируется, что АПЛ «Казань» будет оснащаться принципиально новым оборудованием, которое ранее не использовалось при разработке подводных аппаратов. Мало того, по ряду технических характеристик, в первую очередь благодаря минимальному уровню шума, обнаружить такую субмарину будет весьма проблематично. К тому же эта многоцелевая подлодка составит достойную конкуренцию американскому SSN575 Seawolf.

В конце ноября 2012 г осуществлялись испытания ракетного комплекса «Калибр». Стрельба проводилась из погруженной субмарины «Северодвинск» по наземным целям с расстояния 1.4 тыс. км. К тому же была запущена сверхзвуковая ракета типа «Оникс». Произведенные запуски ракет оказались успешными и доказали целесообразность своего применения.


АПЛ пр. 971 (шифр «Барс») разработана в СПМБМ «Малахит» под руководством Г.Н. Чернышова. Относится к ПЛА третьего поколения и является в полном смысле этого слова многоцелевой. Она предназначена для поиска, обнаружения и слежения за ПЛАРБ и АУГ противника, их уничтожения с началом боевых действий, а также нанесения ударов по береговым объектам. При необходимости лодка может нести мины.

Атомная подводная лодка К-335 «Гепард» — видео

Первоначально АПЛ пр. 971 рассматривалась как «стальной» аналог титановой атомной подводной лодки пр. 945, предназначавшийся для увеличения темпов постройки ПЛА третьего поколения. Однако СПМБМ «Малахит», имея большой опыт проектирования многоцелевых лодок, на базе вооружения, механизмов и оборудования, созданных для пр. 945, разработало, по-существу, новый корабль третьего поколения. Самые малошумные отечественные АПЛ По мнению специалистов, по уровню физических полей сопоставимы с такими кораблями, как АПЛ ВМС США Seawolf.
АПЛ пр. 971 является двухкорпусной и имеет «лимузинное» ограждение выдвижных устройств, а также высокое кормовое оперение, на котором расположен обтекатель для буксируемой антенны ГАК. Прочный корпус выполнен из высокопрочной стали с высоким пределом текучести (100 кгс/мм2) и делится прочными переборками на шесть отсеков.


Все основное оборудование и боевые посты АПЛ пр. 971 размещены на амортизаторах в зональных блоках, представляющих собой пространственные каркасные конструкции с палубами. Зональные блоки изолированы от корпуса лодки резинокордными пневматическими амортизаторами. Благодаря использованию зональных блоков удалось существенно уменьшить уровень акустического поля, обезопасить экипаж и оборудование от динамических нагрузок, а также рационализировать технологию постройки корабля. В частности, монтаж оборудования и систем осуществлялся в цехе в зональном блоке, который затем заводился в обечайку отсека. Легкий корпус и наружная поверхность прочного корпуса облицованы единым резиновым противогидролокационным и шумопоглощающим покрытием.
Корабль имеет традиционное двухрядное расположение ТА. В носовом отсеке расположены стеллажи для хранения боезапаса с устройствами продольной, поперечной подач» и УБЗ. Под ТА находится выгородка с основной антенной ГАК. В ограждении рубки и выдвижных устройств размещаются некоторые из антенн ГАК и ВСК на весь экипаж.


Легкому корпусу приданы формы, оптимальные для подводного хода. Все отверстия и вырезы на нем закрываются обтекателями. На ПЛА пр. 97/ удалось реализовать комплексную автоматизацию боевых и технических средств, сосредоточить управление кораблем, его оружием и вооружением в ГКП. Все это позволило сократить экипаж до 73 человек. Начиная с К-263, на лодках пр. 97/ устанавливается СОКС, а с К-391- в надстройке ПУ для запуска средств комплекса гидроакустического противодействия, аварийная система порохового продувания ЦГБ (пороховые генераторы) и аварийные силовые сети.
Одновременно с постройкой кораблей данного типа осуществляется программа их модернизации, направленная на совершенствование акустических характеристик и расширение боевых возможностей. В частности, К-157 и К-335 при сохранении прежних обводов имеют вставку миной несколько метров для установки нового оборудования.
Первоначально предполагалось построить 20 ПЛА пр. 971. Зав. № 520 и зав. № 521, заложенные соответственно в 1990 и 1991 гт. на ССЗ им. Ленинского комсомола, 18.03.1992 г. исключили из списков флота. На этот момент они имели техническую готовность соответственно 25 и 12%. Задел оборудования и механизмов продолжает сохраняться на заводе-строителе.

По состоянию на декабрь 2001 г. в составе флота находились 13 ПЛА пр. 971.

Атомная подводная лодка К-480 «Барс» (зав. № 821, с 24.07.1991 г., с 13.10.1997 г. «Ак-Барс» СМП (г. Северодвинск): 22.02.1985 г.; 16.04.1988 г.; 31.12.1988 г. Входила в состав СФ и несла боевую службу в Атлантическом океане и Средиземном море. 06.04.1990 г. лодка совершила глубоководное погружение на предельную глубину. В 1998 г. ее исключили из боевого состава флота, передали ОРВИ на долговременное хранение и в пос. Гаджиево поставили на отстой.


Атомная подводная лодка К-317 «Пантера» (зав. № 822, с 10.10.1990). СМП (г.Северодвинск): 06.11.1986 г.; 21.05.1990 г.; 30.12.1990 г. Входит в состав СФ. В сентябре 1999 г. на СМП поставлена в средний ремонт.


К-401 «Волк» (зав. № 831, с 26.07.1991 г). СМП (г. Северодвинск): 14.11.1987 г.; 11.06.1991 г.; 29.12.1991 г. Входит в состав СФ. Выполнила две автономные боевые службы. С декабря 1995 г. по февраль 1996 г. в Средиземном море лодка осуществляла дальнее противолодочное прикрытие авианосной многоцелевой группы во главе с ТАВКР Адмирал флота Советского Союза Кузнецов

К-328 «Леопард» (зав. № 832, с 24.01.1991 г). СМП (г. Северодвинск): 26.10.1988 г.;
28.06.1992г.; 15.12.1992 г. Входит в состав СФ Выполнила четыре автономные боевые службы

К-154 «Тигр» (зав. № 833, с 24.07.1991 г). СМП (г. Северодвинск): 10.09.1989 г.; 26.06.1993 г.; 29.12.1993 г. Входит в состав СФ Выполнила две автономные боевые службы С 1998 по 2002 г. на СМП прошла поддерживающий ремонт.

К-157 «Вепрь» (зав. № 834, с 06.04.1993 г). СМП (г. Северодвинск): 13.07.1990 г.; 10.12.1994 г.; 25.11.1995 г. Входит в состав СФ Выполнила одну автономную боевую службу и одну поисковую операцию.

Атомная подводная лодка К-335 «Гепард» (зав. № 835, с 22.02.1993 г). СМП (г. Северодвинск):23.09.1991 г.; 17.09.1999 г.; 05.12.2001 г. Входит в состав СФ.


К-337 «Кугуар» (зав. № 836, с 25.01.1994 г). СМП (г. Северодвинск): 18.08.1992 г.; Из-за отсутствия финансирования 22.01.1998 г. постройка корабля была приостановлена. Он находится на консервации в одном из цехов СМП. Корпусные конструкции, механизмы и оборудование К-337 предполагается использовать при постройке АПКР пр. 955 (шифр «Борей»).

К-333 «Рысь» (зав. №. 837, с 07.02.1995 г). СМП (г. Северодвинск): 31.08.1993 г. Из-за отсутствия финансирования 06.10.1997 г. постройка корабля была приостановлена. Он находится на консервации в одном из цехов СМП. Корпусные конструкции, механизмы и оборудование К-333 предполагается использовать при постройке АПКР пр. 955 (шифр «Борей»).

К-284 «Акула» (зав. № 501, с 13.04.1993 г). ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 06.11.1983 г.; 16.06.1984 г.; 30.12.1984 г. Головной корабль пр 971 Входил в состав ТОФ. В 2001 г. был исключен из боевого состава флота и передан ОРВИ на долговременное хранение.

К-263 «Дельфин» (зав. № 502, с 13.04.1993 г). ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 09.05.1985 г.; 28.05.1986 г.; 30.12.1987 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.

К-322 «Кашалот» (зав. № 513, с 13.04.1993 г. ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 05.09.1986 г.; 18.07.1987 г.; 30.12.1988 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.

К-391 «Кит», «Братск» с 01.09.1997 г. ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 23.02.1988 г.; 14.04.1989 г.; 29.12.1989 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.

К-331 «Нарвал» (зав. № 515, с 13.04.1993). ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 28.12.1989 г.; 23.06.1990 г.; 31.12.1990 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.

К-419 «Морж», «Кузбасс» с 29.01.1998 . ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 28.07.1991 г.; 18.05.1992 г.; 31.12.1992 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.

Атомная подводная лодка К-295 «Дракон», «Самара» с 30.08.1999. ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 07.11.1993 г.; 05.08.1994 г; 28.07.1995 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.


Атомная подводная лодка К-152 «Нерпа». «Чакра» (INS Chakra) с 23 января 2012 года, когда официально передана в лизинг в ВМС Индии


Тактико-технические характеристики АПЛ проекта 971 «Щука-Б»

Водоизмещение, т:
- надводное ……………………………………………………………….8 140
- подводное ……………………………………………………………… 10 500
Длина наибольшая, м ……………………………………………………….. 110.3
Ширина корпуса наибольшая, м ………………………………………………… 13,6
Осадка средняя, м …………………………………………………………… 9,68
Архитектурно-конструктивный тип ………………двухкорпусный
Глубина погружения, м:
- рабочая……………………………………………………………………. 480
- предельная…………………………………………………………………. 600
Автономность по запасам провизии, сут…………………………………………….100
Экипаж, чел…………………………………………………………………….73
Энергетическая установка:
Главные механизмы.
- тип………………………………………………………………………….АЭУ
- ППУ:
— марка………………………………………………………..ОК-9ВМ или ОК-650М.01
- количество х тип ЯР………………………………………………………..1 х ВВР
- тепловая мощность ЯР, МВт……………………………………………………190
— ПТУ:
- тип………………………………………………………………….блочная
- количество х мощность ГТЗА, л. с …………………………………………1 х 50 000
- количество х мощность АТГ, кВт…………………………………………….2 х 3 200
— количество х тип движителей ……………………………….. 1 х малошумный ВФШ
Резервные источники энергии и средства движения
- количество х мощность ДГ, кВт……………………………………………1 х 800
- аккумуляторная установка:
- тип АБ…………………………………………………………свинцово-кислотная
- количество х тип РСД ……………………………………………..2 х ВПК
- привод ВПК х мощность, кВт……………………………………………..ЭД х 300
Скорость хода наибольшая, уз:
— надводная………………………………………………………………..10
- подводная………………………………………………………………..33
Вооружение:
Ракетное:
- тип ракетного комплекса………………………………………………….«Гранат»
— тип КРСН………………………………………………………………РК-55
- вид старта………………………………………………..подводный, из 533-мм ТА
- тип ПЗРК……………………………………………………………. «Стрела-ЗМ»
- количество контейнеров для хранения ЗР…………………………………3
- боекомплект ЗР……………………………………………………………….18
Торпедное.
— количество х калибр ТА, мм……………………………………………4 х 650
- боезапас (тип) торпед…………………………………..12 (торпеды 65-76 или ПЛУР
…………………………………………………………..86Р и 88Р ПАРК «Ветер»)
- количество х калибр ТА, мм …………………………………………..4 х 533
— боезапас (тип) торпед и ПЛУР….28 (торпеды УСЭТ-80 или ПЛУР 83Р и 84Р ПАРК «Водопад», или М5 ПАРК «Шквал»)
- система подготовки ТА ………………………………………… «Гринда»
Радиоэлектронное:
- БИУС ………………………………………………………..«Омнибус»
- НК……………………………………………………………..«Симфония»
- КСС……………………………………………………………..«Молния-МЦ»
- система СС…………………………………………………..«Цунами-БМ»
— ГАК……………………………….«Скат-3» (МГК-540)

9 сентября 1952 г. вышло подписанное И.В. Сталиным Постановление СМ СССР о создании атомной подводной лодки (ПЛА). Общее руководство научно-исследовательскими работами и работами по проектированию объекта возлагалось на ПГУ при СМ СССР (Б.Л. Ванников, А.П. Завенягин, И.В. Курчатов), а строительство и разработка корабельной части и вооружения - на Министерство судостроительной промышленности (В.А. Малышев, Б.Г. Чиликин). Научным руководителем работ по созданию комплексной ядерной энергетической установки (ЯЭУ) был назначен А.П. Александров, главным конструктором ЯЭУ – Н.А. Доллежаль, главным конструктором лодки - В.Н. Перегудов.

Для руководства работами и рассмотрения научных и конструкторских вопросов, связанных с постройкой подводной лодки, при Научно-техническом совете ПГУ была организована Секция № 8, которую возглавил В.А. Малышев. Выполнение основных работ по ЯЭУ наряду с Курчатовским институтом поручалось Лаборатории "В", а ее директор Д.И. Блохинцев был назначен заместителем научного руководителя. Постановлением Совмина на Лабораторию "В" было возложено выполнение расчетно-теоретических работ, разработка твэлов, сооружение и испытание опытного реактора подводной лодки.

Первой и важнейшей задачей стал выбор типа реактора в качестве основного источника энергии, а также общего облика энергетической установки. Сначала это были реакторы на графитовом и бериллиевом замедлителе с тепловыделяющими трубами, несущими давление, близкие по типу к строящейся тогда Первой АЭС. Несколько позднее возникли установки, у которых замедлителем была тяжелая вода. И только потом (а по тем темпам это был один месяц!) появился корпусной водо-водяной реактор.

Таким образом, уже с самого начала в Лаборатории «В» рассматривались два варианта ЯЭУ для подводных лодок: с водным теплоносителем и жидкометаллическим теплоносителем свинец-висмут. По инициативе А.И. Лейпунского работы по созданию транспортных ядерных установок были начаты в Лаборатории «В» еще в 1949 г.

К этому времени было известно, что в США ведутся работы по установкам двух типов: реакторы на тепловых нейтронах с водой под давлением и реакторы на промежуточных нейтронах с натриевым теплоносителем. Поэтому работы по созданию энергетических установок для атомных подводных лодок были развернуты в двух направлениях: водо-водяные реакторы и реакторы с жидкометаллическим теплоносителем.

Выбор эвтектического сплава свинец-висмут как теплоносителя для ядерных реакторов был сделан А.И. Лейпунским еще до начала развертывания работ в СССР по атомным подводным лодкам. Как вспоминает главный конструктор ЯЭУ Н.А. Доллежаль: «Этот вариант особенно поддерживал Д.И. Блохинцев , в то время директор Лаборатории «В» в Обнинске, где академик Александр Ильич Лейпунский работал над вопросами использования техники быстрых нейтронов. Его идея заключалась в том, что можно создать ядерную энергетическую установку для подводной лодки, в реакторе которой в качестве теплоносителя использовался бы жидкий металл (например, сплав свинца и висмута), и он мог нагреваться до достаточно высокой температуры без создания давления. А.И. Лейпунский был выдающимся ученым, и сомневаться в серьезности его предложений оснований не было».

Научным руководителем работ по созданию реакторов с жидкометаллическим теплоносителем был назначен А.И. Лейпунский , а после его смерти в 1972 г. – Б.Ф. Громов . Проекты серийных реакторных установок для подводных лодок разрабатывали ОКБ «Гидропресс» (г. Подольск) и ОКБМ (г. Нижний Новгород), а проекты самих кораблей – Санкт-Петербургское морское бюро машиностроения (СПМБМ) «Малахит».

В отличие от американцев, А.И. Лейпунский предложил и обосновал в качестве теплоносителя эвтектический сплав свинец-висмут, несмотря на его худшие теплофизические свойства в сравнении с натрием. Последующий опыт развития этих конкурирующих направлений подтвердил правильность выбора, сделанного им. (После нескольких аварий на наземном стенде-прототипе и опытной подлодке работы в США по этому направлению были прекращены.)

Одна из первых проблем возникла в самом начале работ при обосновании нейтронно-физических характеристик реактора с промежуточным спектром нейтронов, который формировался в активной зоне, из-за большой утечки нейтронов, обусловленной малыми размерами реактора и использованием бериллиевого замедлителя. А.И Лейпунский поставил перед В.А. Кузнецовым задачу создать критическую сборку, на которой можно было бы проверить методы и константы для расчета промежуточного реактора. Такая критсборка в 1954 г. была создана. Но 11 марта 1954 г., во время набора критмассы, произошел разгон реактора на мгновенных нейтронах. А.И. Лейпунский и все физики, занятые в эксперименте, были срочно госпитализированы в Москве.

Задача могла быть решена только при наличии крупномасштабных экспериментальных стендов, на которых оборудование отрабатывалось бы в условиях, близких к натурным. Поэтому в 1953 г. на базе Лаборатории «В» приступили к строительству полномасштабных стендов-прототипов ЯЭУ с водяным охлаждением (стенд 27/ВМ) и жидкометаллическим охлаждением (стенд 27/ВТ), которые были введены в эксплуатацию соответственно в 1956 и 1959 гг. Эти стенды представляли собой реакторные и турбинные отсеки атомных подводных лодок. На длительный срок они стали основной экспериментальной базой ФЭИ и Курчатовского института для отработки реакторов новых типов, равно как и базой Обнинского учебного центра ВМФ по подготовке экипажей подводных лодок.

Крейсерская атомная подводная лодка К-27 (проект 645)

Первая советская крейсерская атомная подводная лодка К-27 (проект 645) с ЯЭУ, охлаждаемой жидким металлом, в 1963 г. успешно прошла государственные испытания. В 1964 г. она совершила дальний поход в экваториальную Атлантику, во время которого (впервые в советском ВМФ) без всплытия в надводное положение прошла 12 278 миль за 1240 ходовых часов (51 сутки). Командиру лодки И.И. Гуляеву было присвоено звание Героя Советского Союза. Моряки дали высокую оценку ядерной энергетической установке. От Лаборатории "В" в этом уникальном походе участвовал один из создателей ЯЭУ, главный инженер стенда 27/ВТ К.И. Карих. В 1965 г. К-27 совершила второй поход, став первой советской атомной подводной лодкой, скрытно проникшей в Средиземное море.

В это время развернулось создание серии лодок второго поколения с ЯЭУ, использующей жидкометаллический теплоноситель свинец-висмут. В начале 1960-х годов в связи с созданием и выходом на боевое патрулирование в океан подводных ракетоносцев США, получивших название в западном мире «убийцы городов» (по типу выбора целей – их ракеты были нацелены на наши города), в СССР было принято решение о создании специальных противолодочных подводных лодок. Одним из пунктов программы стало задание на постройку малой скоростной автоматизированной лодки – истребителя подводных лодок, т.е. истребителя «убийц городов».

Проектирование атомной подводной лодки проекта 705 (советский шифр «Лира») началось после выхода Постановления ЦК КПСС и Совета Министров СССР летом 1960 г. Главная задача – создание высокоманевренной, скоростной, малого водоизмещения подводной лодки с ЯЭУ, с титановым корпусом, с резким сокращением численности экипажа, с внедрением новых образцов оружия и технических средств.

Важнейшим элементом паропроизводящей установки новой лодки был ядерный реактор с теплоносителем свинец-висмут, разработанный под научным руководством ФЭИ. Тяжелая биологическая защита и невысокие параметры пара ЯЭУ с водо-водяным реактором (на тот период) приводили к большому удельному весу реакторной установки. Новый реактор с жидкометаллическим теплоносителем позволял сократить водоизмещение, диаметр прочного корпуса и длину подводной лодки, увеличить скорость подводного хода. Благодаря этому принципиальнымотличием новой паропроизводящей установки являлись компактность, блочность компоновки, высокая степень автоматизации и маневренность, хорошие экономические и массогабаритные показатели.

Атомная подводная лодка проекта 705

Особое место в освоении реакторов со свинцово-висмутовым теплоносителем заняла проблема технологии этого теплоносителя. Под этим словосочетанием понимаются методы контроля и поддержания требуемого качества теплоносителя и чистоты первого контура в ходе эксплуатации реакторной установки. Важность этой проблемы была осознана после аварии реактора на лодке К-27 в мае 1968 года. Соответствующие методы и устройства поддержания качества теплоносителя были разработаны, когда завершалось строительство запланированной серии ПЛА проектов 705 и 705К.

Первая крейсерская подводная лодка нового типа К-64 в декабре 1971 года была принята в опытную эксплуатацию. И хотя в составе флота несли боевую службу только шесть кораблей этого типа, появление в океане новой советской противолодочной субмарины наделало много шума и стало для ВМС США неприятной неожиданностью. Американские подводные стратегические ракетоносцы были поставлены в трудное тактическое положение. Малые размеры подводных лодок проекта 705, значительный диапазон глубины погружения, высокая скорость полного хода позволяли ей осуществлять маневрирование на максимальной скорости, невозможное для всех других типов подводных лодок, и даже уходить от противолодочных торпед. Корабли этого проекта за свои скоростные и маневренные качества были занесены в «Книгу рекордов Гиннеса».

«Сейчас, оглядываясь назад, - пишет главный конструктор СПМБМ «Малахит» (где разрабатывался проект лодки) Р.А. Шмаков, - следует признать, что эта лодка была проектом XXI века. Она обогнала свое время на несколько десятилетий. Поэтому не удивительно, что для многих специалистов, испытателей, личного состава ВМФ она оказалась слишком трудной в освоении и эксплуатации».

«Идея создания такой лодки, какой стала ПЛА проекта 705, - отмечает заместитель главного конструктора проекта Б.В. Григорьев, - могла реализоваться только в 1960‑х годах, когда советское общество находилось на подъеме, открывались новые направления научных исследований и разработок, а оборона страны была важнейшим государственным приоритетом.» «Атомная подводная лодка проекта 705, – по определению секретаря ЦК КПСС и министра обороны СССР Д.Ф. Устинова, – стала общенациональной задачей, стала попыткой осуществить рывок для достижения военно-технического превосходства над западным блоком».

Командиры и офицеры подводных лодок с реакторными установками, разработанными в ФЭИ, давали очень высокую оценку самой лодке и её ядерной энергетической установке, называя ее «чудо-лодкой», сильно опередившей своё время.

Сегодня можно считать общепризнанным, что в ФЭИ под руководством А.И. Лейпунского заложены основы нового направления ядерной энергетики, а также в промышленном масштабе продемонстрирована уникальная реакторная технология. Это позволило обеспечить компактность реакторной установки, что важно при создании подводных лодок ограниченного водоизмещения, обеспечить высокие маневренные качества, повысить надёжность и безопасность реакторной установки.

Большой вклад в развитие этого направления внесли А.А. Бакулевский, Б.Ф. Громов , К.И. Карих, В.А. Кузнецов, И.М. Курбатов, В.А. Малых , Г.И. Марчук , Д.М. Овечкин , Ю.И. Орлов, Д.В. Панкратов, Ю.А. Прохоров, В.Н. Степанов, В.И. Субботин , Г.И. Тошинский, А.П. Трифонов, В.В. Чекунов и многие другие.



Новое на сайте

>

Самое популярное