Домой Печи и системы отопления Процессор с самым большим количеством транзисторов. Как устроен процессор? Разбираемся вместе

Процессор с самым большим количеством транзисторов. Как устроен процессор? Разбираемся вместе

Все электронные компоненты компьютера построены на основе транзисторов . Принцип работы транзистора был открыт тремя учёными в конце 40-х годов, работавшими в компании Bell Labs. Этими учёными были Вильям Шоклей (William Shockley), Джон Бардин (John Bardeen) и Вальтер Брэтнен (Walter Brettain). В 1954 году им была присуждена Нобелевская премия. Важность и значение открытия транзистора для дальнейших разработок в компьютерной отрасли равносильно открытию в своё время колеса и способов добычи огня.

Первый компьютер получивший название ENIAC (elecronic Numeracal Integrator and Computer), был разработан в начале 40-х годов.

Компьютер ENIAC на основе электронных ламп.

В то время не были изобретены транзисторы, поэтому компьютер был изготовлен на основе тысяч громоздких и неудобных вакуумных ламп, а для его размещения потребовалось несколько комнат. Вес достигал 27 тонн. Вакуумные лампы сильно нагревались, были очень ненадёжными и требовали много электроэнергии. Когда ENIAC включали - огни близлежащего города каждый раз тускнели. ENIAC выполнял всего несколько функций. Сегодня эти операции делает любой карманный калькулятор.

С момента изобретения первого транзистора был совершён огромный скачок вперёд в области компьютерной техники. Транзисторы — более простые в изготовлении, дешевле, легче, надёжнее и потребляют гораздо меньше энергии.

Первый транзистор заменял 40 электронных ламп, работал с большей скоростью, был дешевле и надёжнее.

Как можно заставить транзистор работать на нас? Говоря упрощённо, мы используем для этого программное обеспечение, которое и даёт указания компьютеру на включение и выключение транзисторов и в итоге приводит к решению поставленной задачи. В процессе выполнения любых программ происходит генерация последовательности электрических импульсов (цифровых сигналов) в виде наличия двух уровней напряжения. Данная последовательность и определяет работу транзисторов.

Естественно, чем более универсальным является программное обеспечение и чем больше транзисторов используется, тем более сложную и трудоёмкую работу может выполнить компьютер.

В компьютере транзистор работает как переключатель и состоит из трёх основных элементов: коллектора, эмиттера и базы. Предположим, что коллектор транзистора подключён к положительному полюсу 6 — вольтовой батареи, а эмиттер к отрицательному полюсу. Электроны не будут при этом проходить через транзистор (он закрыт). Но если мы подадим небольшое (открывающее) напряжение, на базу, то транзистор откроется и через него на участке коллектор-эмиттер пойдёт ток.

В компьютере используются миллионы транзисторов. Например процессор Intel core i7 содержит около миллиарда транзисторов.

Транзисторы в процессоре, на материнской плате, различных картах расширения и периферийных устройствах реагируют на цифровые сигналы, поступающие от других устройств.

Таким образом современный компьютер представляет собой набор электронных переключателей – транзисторов.

Недавно в московском Политехническом музее стенд вычислительной техники серьезно обновился - компания Intel разместила там свой стенд, который получил название "От песка до процессора ". Отныне этот стенд станет неотъемлемой частью школьных экскурсий, но даже взрослым я советую не откладывать посещение заведения на срок более пяти лет – к 2016 году компания Intel планирует серьёзно «проапгрейдить» музей, чтобы он смог войти в десятку лучших музеев науки в мире!

К этому событию был приурочен одноименный цикл лекций из трех частей. Две лекции уже прошло - их содержание вы сможете найти под катом. Ну а если вас все это заинтересует, то еще успеете посетить третюю лекцию, информация о которой находится в конце поста.

Мне не стыдно признаться – большая часть данного текста действительно является конспектом первой лекции, которую провел Николай Суетин , директор по внешним проектам в сфере исследований и разработок Intel в России. По большей части, речь шла про современные полупроводниковые технологии и проблемы, которые перед ними стоят.

Предлагаю приступить к чтению интересного, и начнем мы с самых основ.

Процессор

Технически современный микропроцессор выполнен в виде одной сверхбольшой интегральной схемы, состоящей из нескольких миллиардов элементов - это одна из самых сложных конструкций, созданных человеком. Ключевыми элементами любого микропроцессора являются дискретные переключатели – транзисторы. Блокируя и пропуская электрический ток (включение-выключение), они дают возможность логическим схемам компьютера работать в двух состояниях, то есть в двоичной системе. Размеры транзисторов измеряются в нанометрах. Один нанометр (нм) – это одна миллиардная (10−9) часть метра.
Основную часть работы при создании процессоров делают вовсе не люди, а роботизированные механизмы – именно они туда-сюда таскают кремниевые пластины. Цикл производства каждой пластины может доходить до 2-3 месяцев.

Более подробно (и наглядно) про технологию производства процессоров я еще расскажу, ну а пока совсем вкратце.

Пластины действительно делаются из песка – по распространённости в земной коре кремний занимает второе место после кислорода. Путем химических реакций оксид кремния (SiO 2) тщательно очищают, делая из «грязного» чистый. Для микроэлектроники нужен монокристалличский кремний – его получают из расплава. Все начинается с небольшого кристалла (который и опускают в расплав) – позже он превращается в специальный монокристаллический «буль» ростом с человека. Далее убираются основные дефекты и специальными нитями (с алмазным порошком) буль нарезается на диски – каждый диск тщательно обрабатывается до абсолютно ровной и гладкой (на атомарном уровне) поверхности. Толщина каждой пластины около 1мм – исключительно для того, чтобы она не ломалась и не прогибалась, то есть, чтобы с ней было можно комфортно работать.

Диаметр каждой пластины составляет ровно 300мм – чуть позже на этой площади «вырастут» сотни, а то и тысячи процессоров. К слову, компании Intel, Samsung, Toshiba и TSMC уже сообщили о том, что занимаются разработкой оборудования, способного работать с 450мм-пластинами (на большей площади поместится больше процессоров, а значит и цена каждого будет ниже) – переход на них планируется уже к 2012 году.

Вот изображение поперечного сечения процессора:

Сверху находится защитная металлическая крышка, которая помимо защитной функции, так же выполняет роль теплораспределителя – именно ее мы обильно мажем термопастой, когда устанавливаем кулер. Под теплораспределителем находится тот самый кусочек кремния, который выполняет все пользовательские задачи. Еще ниже – специальная подложка, которая нужна для разводки контактов (и увеличения площади «ножек»), чтобы процессор можно было установить в сокет материнской платы.

Сам чип состоит из кремния, на котором находится до 9 слоев металлизации (из меди) – именно столько уровней нужно, чтобы по определенному закону можно было соединить транзисторы, находящиеся на поверхности кремния (так как сделать все это на одном уровне просто невозможно). По сути, эти слои выполняют роль соединительных проводов, только в гораздо меньшем масштабе; чтобы «провода» не закорачивали друг друга, их разделяют слоем оксида (с низкой диэлектрической проницаемостью).

Как я уже писал выше, элементарной ячейкой процессора является полевой транзистор. Первые полупроводниковые изделия были из германия и первые транзисторы изготавливались из него же. Но как только начали делать полевые транзисторы (под затвором которого находится специальный изолирующий слой - тонкая диэлектрическая пленка, управляющая «включением» и «выключением» транзистора), германий тут же «вымер», уступив дорогу кремнию. Последние 40 лет в качестве основного материала для диэлектрика затвора использовался диоксид кремния (SiO 2), что было обусловлено его технологичностью и возможностью систематического улучшения характеристик транзисторов по мере уменьшения их размеров.

Правило масштабирования простое – уменьшая размеры транзистора, толщина диэлектрика должна уменьшаться пропорционально. Так, например, в чипах с техпроцессом в 65нм толщина слоя диэлектрика затвора из SiO 2 составляла порядка 1.2 нм, что эквивалентно пяти атомарным слоям. Фактически, это физический предел для данного материала, поскольку в результате дальнейшего уменьшения самого транзистора (а значит и уменьшения слоя диоксида кремния), ток утечки через диэлектрик затвора значительно возрастает, что приводит к существенным потерям тока и избыточному тепловыделению. В таком случае слой из диоксида кремния перестает быть препятствием для квантового туннелирования электронов, из-за чего пропадает возможность гарантированного управления состоянием транзистора. Соответственно, даже при идеальном изготовлении всех транзисторов (количество которых в современном процессоре достигает нескольких миллиардов), неправильная работа хотя бы одного из них означает неправильную работу всей логики процессора, что запросто может привести к катастрофе – это если учесть, что микропроцессоры осуществляют управление работой практически всех цифровых устройств (от современных сотовых телефонов до топливных систем автомобилей).

Процесс миниатюризации транзисторов не пошел вопреки законам физики, но и компьютерный прогресс, как мы видим, не остановился. Это значит, что проблему с диэлектриком каким-то образом решили. И ведь действительно решили – при переходе на 45нм компания Intel стала использовать новый материал, так называемый high-k диэлектрик, который заменил бесперспективно тонкий слой диоксида кремния. Слой на базе окиси редкоземельного металла гафния с высоким (20 против 4 у SiO 2) показателем диэлектрической проницаемости k (high-k) стал более толстым, но это позволило сократить ток утечки более чем в десять раз, сохранив при этом возможность корректно и стабильно управлять работой транзистора. Новый диэлектрик оказался плохо совместим с затвором из поликремния, но и это не стало препятствием - для повышения быстродействия затвор в новых транзисторах был выполнен из металла.

Таким образом, компания Intel стала первой в мире компанией, перешедшей к массовому производству микропроцессоров с использованием гафния. Более того, пальма первенства до сих пор принадлежит корпорации - до сих никто не может воспроизвести эту технологию, т.к. пленка из диэлектрика создается методом атомарного напыления, причем материал наносится последовательными слоями толщиной всего в один атом.
Интересно, после прочтения этих абзацев у вас возникла мысль о том, как миллиарды транзисторов проектируют, делают и умещают на такой маленькой площади? И как это в итоге все работает и, при этом, стоит вполне разумных денег? Я очень сильно призадумался, хотя раньше считал все это очевидным и у меня даже хватало совести думать «Эй, а чего так дорого? За один-то процессор только! »:)

В 1965 году один из основателей корпорации Intel, Гордон Мур, зафиксировал эмпирическое наблюдение, ставшее впоследствии знаменитым законом его имени. Представив в виде графика рост производительности микросхем памяти, он обнаружил любопытную закономерность: новые модели микросхем разрабатывались спустя равные промежутки времени - примерно 18-24 месяца - после появления их предшественников, а емкость микросхем при этом возрастала каждый раз примерно вдвое.

Позже Гордон Мур предсказал закономерность, предположив, что количество транзисторов в микропроцессорах будет удваиваться каждые два года – собственно, постоянно создавая инновационные технологии, корпорация Intel обеспечивает выполнение закона Мура вот уже более 40 лет.

Количество транзисторов продолжает расти, хотя размеры процессора «на выходе» остаются относительно неизменными. Секрета, опять же, никакого нет – это становится понятным, если взглянуть на следующую зависимость.

Как видите, раз в два года топологические размеры уменьшаются в 0.7 раз. Как результат уменьшения размеров транзисторов – выше скорость их переключения, ниже цена и меньше потребляемая мощность.

На данный момент компания Intel выпускает процессоры по технологии 32нм. Ключевые технические отличия от технологии 45нм:
- используется 9 уровней металлизации
- применяется high-k диэлектрик нового поколения (тоже оксид гафния, но со специальными добавками – полученный слой эквивалентен 0.9нм оксида кремния)

Создание нового технологического процесса для создания металлического затвора привело к 22% увеличению производительности всех транзисторов (по сравнению с 45нм), а так же к самой большой плотности элементов, что потребовало самой большой плотности тока.

Производство

Компания Intel производит процессоры в трех странах – это США, Израиль и Ирландия. На данный момент у компании существует 4 фабрики для массового производства процессоров по технологии 32нм. Это: D1D и D1C в штате Орегон, Fab 32 в штате Аризона и Fab 11X в Нью-Мексико. И в устройстве этих заводов и в их работе есть немало интересных вещей, но об этом я расскажу в следующий раз.

Стоимость такого завода составляет порядка $5млрд, а если делать сразу несколько заводов, то сумму инвестиций можно смело умножить. Если учесть, что смена технологий происходит раз в два года, то получается, что у завода есть ровно 4 года на то, чтобы «отбить» вложенные в него $5млрд и принести прибыль. Из чего напрашивается очевидный вывод - экономика очень даже диктует развитие технического прогресса… но, несмотря на все эти огромные цифры, стоимость производства одного транзистора продолжает падать - сейчас она составляет менее одной миллиардной доллара.

Не надо думать, что с переходом нескольких фабрик на 32нм, все вдруг станет производиться по этому техпроцессу – тем же чипсетам и другим периферийным схемам это просто не нужно – в большинстве случаев в них используется 45нм. Рубеж в 22нм планируется полноценно взять уже в следующем году, а к 2013 с большой вероятностью будет и 16нм. По крайней мере, в этом году уже была сделана тестовая пластина (на 22нм), на которой была продемонстрирована работоспособность всех элементов, необходимых для работы процессора.

* UPD от nE0 * Необходимость уменьшения толщины подзатворного диэлектрика диктуется простой формулой плоского конденсатора:

Площадь затвора транзистора уменьшается, а для работоспособности транзистора емкость подзатворного диэлектрика нужно сохранять.
Поэтому приходилось уменьшать его толщину, а когда это стало невозможно нашли материал с большей величиной диэлектрической проницаемости.

Когда закончится эра кремния? Точная дата пока неизвестна, но она определенно не за горами. В технологии 22нм он еще определенно «повоюет», скорее всего и в 16нм останется… а вот дальше начнется самое интересное. Периодическая таблица, в принципе, достаточно большая и выбрать есть из чего) Но скорее всего, всё упрется не только в химию. Увеличения эффективности работы процессора можно будет добиться либо уменьшение топологические размеры (сейчас так и делают), либо используя другие соединения, обладающие более высокой подвижностью носителей – возможно, арсенид галлия, возможно «нашумевший» и перспективный графен (кстати, у него подвижность в сотни раз выше, чем у кремния). Но и тут есть проблемы. Сейчас технологии рассчитаны на обработку пластин с диаметром в 300мм – нужного для такой пластины количества арсенида галлия просто нет в природе, а графен (ворд настойчиво предлагает писать «графин») такого размера изготовить еще крайне сложно – делать это научились, но много дефектов, проблемы воспроизведения, легирования и т.д.

Скорее всего, следующим шагом станет нанесение монокристаллического арсенида галлия на кремний, а вот потом уже графен. А, возможно, развитие микроэлектроники пойдет не только по пути улучшения технологий, но и по пути развития принципиально новой логики – такое ведь тоже исключать нельзя. Сделаем ставки, господа? ;)

В общем, сейчас идет борьба за технологии и высокие подвижности. Но понятно одно – причин для остановки прогресса нет.

Тик-так

Процесс изготовления процессоров состоит из двух больших «частей». Для первой нужно иметь саму технологию изготовления, а для второй нужно понимание того, ЧТО изготавливать и как - архитектуру (то как соединены транзисторы). Если одновременно сделать и новую архитектуру и новую технологию, то в случае неудачи будет сложно найти «виновных» - одни будут говорить, что виноваты «архитекторы», другие – что технологи. В общем, следовать такой стратегии очень недальновидно.

В компании Intel введение новой технологии и архитектуры разнесено по времени – в один год вводится технология (и уже отработанная архитектура производится по новой технологии – если что-то пойдет «не так», то виноваты будут технологи); а когда новая технология будет отработана – архитекторы сделают под нее новую архитектуру и если на отработанной технологии что-то не заработает, то виноваты будут уже архитекторы. Такую стратегию назвали «Тик-так».
Более наглядно:

С существующими темпами развития технологий, требуются фантастических размеров вложения в исследования и разработку - ежегодно Intel вкладывает в это дело $4-5млрд. Часть работы происходит внутри компании, но очень многое – за ее пределами. Просто держать в компании целую лабораторию на подобии Bell Labs (кузница нобелевских лауреатов) в наше время практически невозможно.
Как правило, первые идеи закладываются в университетах – для того, чтобы университеты знали над чем именно имеет смысл работать (какие технологии востребованы и что будет актуально), все «полупроводниковые компании» были объединены в консорциум. После этого они предоставляют своего рода roadmap – в нем говорится о всех проблемах, которые будут стоять перед полупроводниковой промышленностью в ближайшие 3-5-7 лет. По идее, любая компания вправе буквально зайти в университет и «воспользоваться» той или иной инновационной разработкой, но права на них, как правило, остаются у университета-разработчика – такой подход называется «открытыми инновациями». Компания Intel не стала исключением и периодически прислушивается к идеям студентов – после защиты, отбора на инженерном уровне и тестирования в реальных условиях, у идеи есть все шансы стать новой технологией.

Вот список исследовательских центров по всему миру, с которыми работает Intel (кроме университетов):

Увеличение производительности приводит к удорожанию фабрик, а это в свою очередь ведёт к естественному отбору. Так, например, чтобы окупить себя за 4 года, каждая фабрика Intel должна выпускать минимум 100 работающих пластин в час. На каждой пластине тысячи чипов… и если произвести определенные расчеты, то станет понятно - не будь у Intel 80% мирового рынка процессоров, компания просто не смогла бы окупать расходы. Вывод – иметь у себя и собственный «дизайн» и собственное производство в наше время достаточно накладно – как минимум нужно иметь огромный рынок. Результат естественного отбора можно видеть ниже – как видно, со своим «дизайном» и производством в ногу с техническим прогрессом шагает все меньше и меньше компаний. Всем остальным пришлось перейти в режим fabless – так, например, ни у Apple, ни у NVIDIA, ни даже у AMD нет собственных фабрик и им приходится пользоваться услугами других компаний.

Помимо Intel, к технологии 22нм во всем мире потенциально готовы только две компании - Samsung и TSMC, вложившие в прошлом году в свои фабрики более $1млрд. Причем у TSMC нет своего подразделения дизайна (только лишь foundry) – по сути, это просто высокотехнологичная кузница, которая принимает заказы от других компаний и часто даже не знает того, что куёт.

Как можно заметить, естественный отбор прошел достаточно быстро – всего за 3 года. Отсюда можно сделать два вывода. Первый – что без своей фабрики лидером индустрии стать вряд ли получится; второй – по сути, преуспевать можно и без своего завода. По большому счету хватит хорошего компьютера, мозгов и умения «рисовать» - порог вхождения на рынок сильно снизился и именно по этой причине появилось очень много «стартапов». Некто придумывает некую схему, для которой есть или искусственно создается некий рынок - начинающие производители поднимаются… PROFIT! Но вот порог на рынок foundry сильно поднялся и дальше будет только расти…

Что еще поменялось за последние годы? Если повспоминать, то года так до 2004 утверждение «чем больше частота процессора, тем лучше» было вполне справедливым. Начиная с 2004-2005 частота процессоров почти перестала расти, что связано с выходом на своего рода физические ограничения. Сейчас наращивать производительность можно за счет многоядерности - выполняя задачи параллельно. Но сделать много ядер на одном чипе не является большой проблемой – гораздо сложнее заставить их правильно работать в нагрузке. Как следствие – с этого момента роль софта кардинально возросла и значимость профессии «программист» в ближайшее время будет только набирать обороты.

В общем, подводя итог вышесказанному :
- Закон Мура продолжает действовать
- Рост стоимости разработки новых технологий и материалов, а также затраты на содержание фабрик растут
- Производительность также растет. Ожидается скачок при переходе на 450мм пластины

Как результат :
- Разделение компаний на «fabless» и «foundry»
- Outsource основных R&D
- Дифференциация за счет развития софта

The end

Вам было интересно читать? Надеюсь. Как минимум, мне было интересно все это написать и еще интересней было это слушать… хотя тоже сперва подумал, «да что на этой лекции расскажут».

На прошлой неделе в московском Политехническом музее состоялась вторая лекция, которую

Современного потребителя электроники очень сложно удивить. Мы уже привыкли к тому, что наш карман законно занимает смартфон, в сумке лежит ноутбук, на руке послушно отсчитывают шаги «умные» часы, а слух ласкают наушники с активной системой шумоподавления.

Забавная штука, но мы привыкли носить с собой не один, а сразу два, три и более компьютеров. Ведь именно так можно назвать устройство, у которого есть процессор . И вовсе неважно, как выглядит конкретный девайс. За его работу отвечает миниатюрный чип, преодолевший бурный и стремительный путь развития.

Почему мы подняли тему процессоров? Все просто. За последние десять лет произошла настоящая революция в мире мобильных устройств.

Между этими устройствами всего 10 лет разницы. Но Nokia N95 тогда нам казалась космическим девайсом, а на ARKit сегодня мы смотрим с определенным недоверием

А ведь все могло бы сложиться иначе и потрепанный Pentium IV так бы и остался пределом мечтаний рядового покупателя.

Мы постарались обойтись без сложных технических терминов и рассказать, как работает процессор, и выяснить, за какой архитектурой будущее.

1. С чего все началось

Первые процессоры были абсолютно не похожи на то, что вы можете видеть, приоткрыв крышку системного блока вашего ПК.

Вместо микросхем в 40-е годы XX века использовались электромеханические реле , дополненные вакуумными лампами. Лампы выполняли роль диода, регулировать состояние которого можно было за счет понижения или повышения напряжения в цепи. Выглядели такие конструкции так:

Для работы одного исполинского компьютера нужны были сотни, иногда тысячи процессоров. Но, при этом, вы не смогли бы запустить на таком компьютере даже простенький редактор, как NotePad или TextEdit из штатного набора Windows и macOS. Компьютеру банально не хватило бы мощности.

2. Появление транзисторов

Первые полевые транзисторы появились еще в 1928 году. Но мир изменился лишь после появления так называемых биполярных транзисторов , открытых в 1947-м.

В конце 40-х физик-экспериментатор Уолтер Браттейн и теоретик Джон Бардин разработали первый точечный транзистор. В 1950 его заменил первый плоскостной транзистор, а в 1954 году небезызвестный производитель Texas Instruments анонсировал уже кремниевый транзистор.

Но настоящая революция наступила в 1959 году, когда ученый Жан Энри разработал первый кремниевый планарный (плоский) транзистор, который стал основой для монолитных интегральных схем.

Да, это немного сложно, поэтому давайте копнем немного глубже и разберемся с теоретической частью.

3. Как работает транзистор

Итак, задача такого электрического компонента как транзистор заключается в управлении током. Проще говоря, этот немного хитрый переключатель, контролирует подачу электричества.

Основное преимущество транзистора перед обычным переключателем в том, что он не требует присутствия человека. Т.е. управлять током такой элемент способен самостоятельно. К тому же, он работает намного быстрее, чем вы бы самостоятельно включали или отключали электрическую цепь.

Из школьного курса информатики вы, наверняка, помните, что компьютер «понимает» человеческий язык за счет комбинаций всего двух состояний: «включено» и «выключено». В понимании машины это состояние "0" или "1".

Задача компьютера заключается в том, чтобы представить электрический ток в виде чисел.

И если раньше задачу переключения состояний выполняли неповоротливые, громоздкие и малоэффективные электрические реле, то теперь эту рутинную работу взял на себя транзистор.

С начала 60-х транзисторы стали изготавливать из кремния, что позволило не только делать процессоры компактнее, но и существенно повысить их надежность.

Но сначала разберемся с диодом

Кремний (он же Si – "silicium" в таблице Менделеева) относится к категории полупроводников, а значит он, с одной стороны, пропускает ток лучше диэлектрика, с другой, – делает это хуже, чем металл.

Хочется нам того или нет, но для понимания работы и дальнейшей история развития процессоров придется окунуться в строение одного атома кремния. Не бойтесь, сделаем это кратко и очень понятно.

Задача транзистора заключается в усилении слабого сигнала за счет дополнительного источника питания.

У атома кремния есть четыре электрона, благодаря которым он образует связи (а если быть точным – ковалентные связи) с такими же близлежащими тремя атомами, формируя кристаллическую решетку. Пока большинство электронов находятся в связи, незначительная их часть способна двигаться через кристаллическую решетку. Именно из-за такого частичного перехода электронов кремний отнесли к полупроводникам.

Но столь слабое движение электронов не позволило бы использовать транзистор на практике, поэтому ученые решили повысить производительность транзисторов за счет легирования , а проще говоря – дополнения кристаллической решетки кремния атомами элементов с характерным размещением электронов.

Так стали использовать 5-валентную примесь фосфора, за счет чего получили транзисторы n-типа . Наличие дополнительного электрона позволило ускорить их движение, повысив пропуск тока.

При легировании транзисторов p-типа таким катализатором стал бор, в который входят три электрона. Из-за отсутствия одного электрона, в кристаллической решетке возникают дырки (выполняют роль положительного заряда), но за счет того, что электроны способны заполнять эти дырки, проводимость кремния повышается в разы.

Предположим, мы взяли кремниевую пластину и легировали одну ее часть при помощи примеси p-типа, а другую – при помощи n-типа. Так мы получили диод – базовый элемент транзистора.

Теперь электроны, находящиеся в n-части, будут стремится перейти в дырки, расположенные в p-части. При этом n-сторона будет иметь незначительный отрицательный, а p-сторона – положительный заряды. Образованное в результате этого «тяготения» электрическое поле –барьер, будет препятствовать дальнейшему перемещению электронов.

Если к диоду подключить источник питания таким образом, чтобы "–" касался p-стороны пластины, а "+" – n-стороны, протекание тока будет невозможно из-за того, что дырки притянутся в минусовому контакту источника питания, а электроны – к плюсовому, и связь между электронами p и n стороны будет утеряна за счет расширения объединенного слоя.

Но если подключить питание с достаточным напряжением наоборот, т.е. "+" от источника к p-стороне, а "–" – к n-стороне, размещенные на n-стороне электроны будут отталкиваться отрицательным полюсом и выталкиваться на p-сторону, занимая дырки в p-области.

Но теперь электроны притягивает к положительному полюсу источника питания и они продолжаются перемещаться по p-дыркам. Это явление назвали прямым смещением диода .

Диод + диод = транзистор

Сам по себе транзистор можно представить как два, состыкованных друг к другу диода. При этом p-область (та, где размещены дырки) у них становится общей и именуется «базой».

У N-P-N транзистора две n-области с дополнительными электронами – они же «эмиттер» и «коллектор» и одна, слабая область с дырками – p-область, именуемая «базой».

Если подключить источник питания (назовем его V1) к n-областям транзистора (независимо от полюса), один диод получит обратное смещение и транзистор будет находиться в закрытом состоянии .

Но, как только мы подключим еще один источник питания (назовем его V2), установив "+" контакт на «центральную» p-область (базу), а "–" контакт на n-область (эмиттер), часть электронов потечет по вновь образованной цепи (V2), а часть будет притягиваться положительной n-областью. В результате, электроны потекут в область коллектора, а слабый электрический ток будет усилен.

Выдыхаем!

4. Так как все-таки работает компьютер?

А теперь самое главное .

В зависимости от подаваемого напряжения, транзистор может быть либо открыт , либо закрыт . Если напряжение недостаточное для преодоления потенциального барьера (того самого на стыке p и n пластин) – транзистор будет находится в закрытом состоянии – в состоянии «выключен» или, говоря языком двоичной системы – "0".

При достаточно напряжении транзистор открывается, а мы получаем значение «включен» или "1" в двоичной системе.

Такое состояние, 0 или 1, в компьютерной индустрии назвали «битом».

Т.е. мы получаем главное свойство того самого переключателя, который открыл человечеству путь к компьютерам!

В первом электронном цифровом вычислителе ЭНИАК, а проще говоря – первом компьютере, использовалось около 18 тысяч ламп-триодов. Размер компьютера был сопоставим с теннисным кортом, а его вес составлял 30 тонн.

Для понимания работы процессора нужно понять еще два ключевых момента.

Момент 1 . Итак, мы определились с тем, что такое бит . Но с его помощью мы можем лишь получить две характеристики чего-либо: или «да» или «нет». Для того, чтобы компьютер научился понимать нас лучше, придумали комбинацию из 8 битов (0 или 1), которую прозвали байтом .

Используя байт можно закодировать число от нуля до 255. Используя эти 255 чисел – комбинаций нулей и единиц, можно закодировать все что угодно.

Момент 2. Наличие чисел и букв без какой-либо логики нам бы ничего не дало. Именно поэтому появилось понятие логических операторов .

Подключив всего два транзистора определенным образом, можно добиться выполнения сразу нескольких логических действий: «и», «или». Комбинация величины напряжения на каждом транзисторе и тип их подключения позволяет получить разные комбинации нулей и единиц.

Стараниями программистов значения нулей и единиц, двоичной системы, стали переводить в десятичную для того, чтобы мы могли понять, что именно «говорит» компьютер. А для ввода команд привычные нами действия, вроде ввода букв с клавиатуры, представлять в виде двоичной цепи команд.

Проще говоря, представьте, что есть таблица соответствия, скажем, ASCII, в которой каждой букве соответствует комбинация 0 и 1. Вы нажали кнопку на клавиатуре, и в этот момент на процессоре, благодаря программе, транзисторы переключились таким образом, чтобы на экране появилась та самая, написанная на клавише буква.

Это довольно примитивное объяснение принципа работы процессора и компьютера, но именно понимание этого позволяет нам двигаться дальше.

5. И началась транзисторная гонка

После того, как в 1952 году британский радиотехник Джеффри Дамер предложил размещать простейшие электронные компоненты в монолитном кристалле полупроводника, компьютерная индустрия сделал семимильный шаг вперед.

От интегральных схем, предложенных Дамером, инженеры быстро перешли на микрочипы , в основе которых использовались транзисторы. В свою очередь, нескольких таких чипов уже образовывали сам процессор .

Разумеется, что размеры таких процессоров мало чем схожи с современными. К тому же, вплоть до 1964 года у всех процессоров была одна проблема. Они требовали индивидуального подхода – свой язык программирования для каждого процессора.

  • 1964 год IBM System/360. Компьютер, совместимый с универсальным программным кодом. Набор инструкций для одной модели процессора мог использоваться и для другой.
  • 70-e годы. Появление первых микропроцессоров. Однокристальный процессор от Intel. Intel 4004 – 10 мкм ТП, 2 300 транзисторов, 740 КГц.
  • 1973 год Intel 4040 и Intel 8008. 3 000 транзисторов, 740 КГц у Intel 4040 и 3 500 транзисторов при 500 кГц у Intel 8008.
  • 1974 год Intel 8080. 6 мкм ТП и 6000 транзисторов. Тактовая частота около 5 000 кГц. Именно этот процессор использовался в компьютере Altair-8800. Отечетсвенная копия Intel 8080 – процессор КР580ВМ80А, разработанный Киевским НИИ микроприборов. 8 бит.
  • 1976 год Intel 8080 . 3 мкм ТП и 6500 транзисторов. Тактовая частота 6 МГц. 8 бит.
  • 1976 год Zilog Z80. 3 мкм ТП и 8500 транзисторов. Тактовая частота до 8 МГц. 8 бит.
  • 1978 год Intel 8086 . 3 мкм ТП и 29 000 транзисторов. Тактовая частота около 25 МГц. Система команд x86, которая используется и сегодня. 16 бит.
  • 1980 год Intel 80186 . 3 мкм ТП и 134 000 транзисторов. Тактовая частота – до 25 МГц. 16 бит.
  • 1982 год Intel 80286. 1,5 мкм ТП и 134 000 транзисторов. Частота – до 12,5 МГц. 16 бит.
  • 1982 год Motorola 68000 . 3 мкм и 84 000 транзисторов. Этот процессор использовался в компьютере Apple Lisa.
  • 1985 год Intel 80386 . 1,5 мкм тп и 275 000 транзисторов.Частота – до 33 МГц в версии 386SX.

Казалось бы, продолжать список можно было бы до бесконечности, но тут инженеры Intel столкнулись с серьезной проблемой.

6. Закон Мура или как чипмейкерам жить дальше

На дворе конец 80-х. Еще в начале 60-х один из основателей компании Intel Гордон Мур формулировал так называемый «Закон Мура». Звучит он так:

Каждые 24 месяца количество транзисторов, размещенных на кристалле интегральной схемы, удваивается.

Назвать этот закон законом сложно. Вернее будет окрестить его эмпирическим наблюдением. Сопоставив темпы развития технологий, Мур сделал вывод, что может сформироваться подобная тенденция.

Но уже во время разработки четвертого поколения процессоров Intel i486 инженеры столкнулись с тем, что уже достигли потолка производительности и больше не могут разместить большее количество процессоров на той же площади. На тот момент технологии не позволяли этого.

В качестве решения был найден вариант с использованием рядом дополнительных элементов:

  • кэш-памяти;
  • конвейера;
  • встроенного сопроцессора;
  • множителя.

Часть вычислительной нагрузки ложилась на плечи этих четырех узлов. В результате, появление кэш-памяти с одной стороны усложнило конструкцию процессора, с другой – он стал значительно мощнее.

Процессор Intel i486 состоял уже из 1,2 млн транзисторов, а максимальная частота его работы достигла 50 МГц.

В 1995 году к разработке присоединяется компания AMD и выпускает самый быстрый на тот момент i486-совместимый процессор Am5x86 на 32-битной архитектуре. Изготавливался он уже по 350 нанометровому техпроцессу, а количество установленных процессоров достигло 1,6 млн штук. Тактовая частота повысилась до 133 МГц.

Но гнаться за дальнейшим наращиванием количества установленных на кристалле процессоров и развитии уже утопической архитектуры CISC (Complex Instruction Set Computing) чипмейкеры не решились. Вместо этого американский инженер Дэвид Паттерсон предложил оптимизировать работу процессоров, оставив лишь самые необходимые вычислительные инструкции.

Так производители процессоров перешли на платформу RISC (Reduced Instruction Set Computing]. Но и этого оказалось мало.

В 1991 году выходит 64-битный процессор R4000, работающий на частоте 100 МГц. Через три года появляется процессор R8000, а еще через два года – R10000 с тактовой частотой вплоть до 195 МГц. Параллельно развивался рынок SPARC-процессоров, особенностью архитектуры которых стало отсутствие инструкций умножения и деления.

Вместо борьбы за количество транзисторов, производители чипов стали пересматривать архитектуру их работы . Отказ от «ненужных» команд, выполнение инструкций в один такт, наличие регистров общего значения и конвейеризация позволили оперативно наращивать тактовую частоту и мощность процессоров, не извращаясь с количеством транзисторов.

Вот лишь некоторые из появившихся с период с 1980 по 1995 год архитектур:

  • SPARC;
  • ARM ;
  • PowerPC;
  • Intel P5;
  • AMD K5;
  • Intel P6.

В их основе лежала платформа RISC, а в некоторых случаях и частичное, совмещенное использование CISC-платформы. Но развитие технологий вновь подталкивало чипмейкеров продолжить наращивание процессоров.

В августе 1999 года на рынок выходе AMD K7 Athlon, изготовленный по 250 нанометровому техпроцессу и включающий 22 млн транзисторов. Позднее планку подняли до 38 млн процессоров. Потом до 250 млн.

Увеличивался технологический процессор, росла тактовая частота. Но, как гласит физика, всему есть предел.

7. Конец транзисторных соревнований близко

В 2007 году Гордон Мур выступил с весьма резким заявлением:

Закон Мура скоро перестанет действовать. Устанавливать неограниченное количество процессоров до бесконечности невозможно. Причина тому - атомарная природа вещества.

Невооруженным глазом заметно, что два ведущих производителям чипов AMD и Intel последние несколько лет явно замедлили темпы развития процессоров. Точность технологического процесса выросла всего до нескольких нанометров, но размещать еще больше процессоров невозможно.

И пока производители полупроводников грозятся запустить многослойные транзисторы, проводя параллель с 3DNand памятью, у упершейся в стену архитектуры x86 еще 30 лет назад появился серьезный конкурент.

8. Что ждет «обычные» процессоры

«Закон Мура» признан недействительным еще с 2016 года. Об этом официально заявил крупнейший производитель процессоров Intel. Удваивать вычислительную мощность на 100% каждые два года чипмейкеры больше не состоянии.

И теперь у производителей процессоров есть несколько малоперспективных вариантов.

Первый вариант – квантовые компьютеры . Попытки построить компьютер, который использует для представления информации частицы, уже были. В мире существует несколько подобных квантовых устройств, но они способны справляться лишь с алгоритмами небольшой сложности.

К тому же, о серийном запуске подобных устройств в ближайшие десятилетия не может идти и речи. Дорого, неэффективно и… медленно!

Да, квантовые компьютеры потребляют намного меньше энергии, чем их современные коллеги, но при этом работать они будут медленнее до тех пор, пока разработчики и производители комплектующих не перейдут на новую технологию.

Второй вариант – процессоры со слоями транзисторов . О данной технологии всерьез задумались и в Intel, и в AMD. Вместо одного слоя транзисторов планируют использовать несколько. Похоже, что в ближайшие годы вполне могут появится процессоры, в которых будут важны не только количество ядер и тактовая частота, но и количество транзисторных слоев.

Решение вполне имеет право на жизнь, и таким образом монополистам удастся доить потребителя еще пару десятков лет, но, в конце концов, технология опять-таки упрется в потолок.

Сегодня же, понимая стремительное развитие ARM-архитектуры, Intel провела негромкий анонс чипов семейства Ice Lake. Процессоры будут изготавливаться по 10-нанометровому технологическому процессу и станут основой для смартфонов, планшетов и мобильных устройств. Но произойдет это в 2019 году.

9. Будущее за ARM

Итак, архитектура x86 появилась в 1978 году и относится к типу платформы CISC. Т.е. сама по себе она предполагает наличие инструкций на все случаи жизни. Универсальность – главный конек x86.

Но, в тоже время, универсальность сыграла с этими процессорами и злую шутку. У x86 есть несколько ключевых недостатков:

  • сложность команд и откровенная их запутанность;
  • высокое потребление энергии и выделение теплоты.

За высокую производительность пришлось попрощаться с энергоэффективностью. Более того, над архитектурой x86 сейчас трудятся две компании, которых можно смело отнести к монополистам. Это Intel и AMD. Производить x86-процессоры могут только они, а значит и правят развитием технологий только они.

В тоже время разработкой ARM (Arcon Risk Machine) занимаются сразу несколько компания. Еще в 1985 году в качестве основы для дальнейшего развития архитектуры разработчики выбрали платформу RISC.

В отличие от CISC, RISC предполагает разработку процессора с минимально необходимым количеством команд, но максимальной оптимизацией. Процессоры RISC намного меньше CISC, более энергоэффективны и просты.

Более того, ARM изначально создавался исключительно как конкурент x86. Разработчики ставили задачу построить архитектуру, более эффективную чем x86.

Еще с 40-х годов инженеры понимали, что одной из приоритетных задач остается работа над уменьшением габаритов компьютеров, а, в первую очередь - самих процессоров. Но вряд ли почти 80 лет назад кто-либо мог предположить, что полноценный компьютер будет меньше спичечного коробка.

Архитектуру ARM в свое время поддержала компания Apple, запустив производство планшетов Newton на базе семейства ARM-процессоров ARM6.

Продажи стационарных компьютеров стремительно падают, в то время как количество ежегодно реализуемых мобильных устройств уже исчисляется миллиардами. Зачастую, помимо производительности, при выборе электронного гаджета пользователя интересуют еще несколько критериев:

  • мобильность;
  • автономность.

x86 архитектура сильна в производительности, но стоит вам отказаться от активного охлаждения, как мощный процессор покажется жалким на фоне архитектуры ARM.

10. Почему ARM – неоспоримый лидер

Вряд ли вы будете удивлены, что ваш смартфон, будь то простенький Android или флагман Apple 2016 года в десятки раз мощнее полноценных компьютеров эпохи конца 90-х.

Но во сколько мощнее тот же айфон?

Само по себе сравнение двух разных архитектур – штука очень сложная. Замеры здесь можно выполнить лишь приблизительно, но понять то колоссальное преимущество, что дает построенные на ARM-архитектуре процессоры смартфона, можно.

Универсальный помощник в таком вопросе – искусственный тест производительности Geekbench. Утилита доступна как на стационарных компьютерах, так и на Android и iOS платформах.

Средний и начальный класс ноутбуков явно отстает от производительности iPhone 7. В топовом сегменте все немного сложнее, но в 2017 году Apple выпускает iPhone X на новом чипе A11 Bionic.

Там, уже знакомая вам архитектура ARM, но показатели в Geekbench выросли почти вдвое. Ноутбуки из «высшего эшелона» напряглись.

А ведь прошел всего один год.

Развитие ARM идет семимильными шагами. Пока Intel и AMD год за годом демонстрируют 5 – 10% прирост производительности, за тот же период производители смартфонов умудряются повысить мощность процессоров в два – два с половиной раза.

Скептически настроенным пользователям, которые пройдутся по топовым строчкам Geekbench лишь хочется напомнить: в мобильных технологиях размер – это то, что прежде всего имеет значение.

Установите на стол моноблок с мощным 18-ядерный процессором, который «в клочья разрывает ARM-архитектуру», а затем положите рядом iPhone. Чувствуете разницу?

11. Вместо вывода

Объять 80-летнюю историю развития компьютеров в одном материале невозможно. Но, прочитав данную статью, вы сможете понять как устроен главный элемент любого компьютера – процессор, и чего стоит ждать от рынка в последующие годы.

Безусловно, Intel и AMD буду работать над дальнейшим наращиванием количества транзисторов на одном кристалле и продвигать идею многослойных элементов.

Но нужна ли вам как покупателю такая мощность?

Вряд ли вас не устраивает производительность iPad Pro или флагманского iPhone X. Не думаю, что вы недовольны производительностью расположившейся на кухне мультиварки или качеством картинки на 65-дюймовом 4K-телевизоре. А ведь во всех этих устройствах используются процессоры на ARM-архитектуре.

Windows уже официально заявила, что с интересом смотрит в сторону ARM. Поддержку этой архитектуры компания включила еще в Windows 8.1, а ныне активно работает над тандемом с ведущим ARM-чипмейкером Qualcomm.

На ARM успела посмотреть и Google – операционная система Chrome OS поддерживает эту архитектуру. Появились сразу несколько дистрибутивов Linux, которые также совместимы с данной архитектурой. И это только начало.

И лишь попробуйте на минутку представить, каким приятным будет сочетание энергоэффективного ARM-процессора с графеновым аккумулятором. Именно эта архитектура позволит получить мобильные эргономичные гаджеты, которые смогут диктовать будущее.

Самым большим различием между процессорами Sandy Bridge и Ivy Bridge является техпроцесс. Причём мы не только получили переход с 32-нм техпроцесса на 22 нм, но и впервые получили новую разновидность транзистора, с трёхмерным затвором. Данная технология позволяет снизить токи утечки и повысить эффективность энергопотребления процессора - в результате мы получаем экономичный процессор не только из-за снижения техпроцесса, но и из-за более эффективных транзисторов.

Core i7-3770K содержит интегрированное графическое ядро HD Graphics 4000 и
1,4 млрд. транзисторов в общей сложности. В случае Sandy Bridge число транзисторов составляло всего 995 млн.
Что касается размера кристалла, то Intel удалось снизить площадь с 216 мм² до 160 мм².

Модели Ivy Bridge обладают примерно на 405 млн. транзисторов больше, чем Sandy Bridge. Но на этот раз Intel не увеличила кэш-память или количество ядер. Да и контроллер памяти был оставлен во многом неизменным, системный агент тоже прежний. Куда же были потрачены 405 млн. транзисторов? По большей части - на интегрированное графическое ядро Intel. Причём Intel не только увеличила размер буферов, но и удвоила количество вычислительных блоков ядра.

Интересно сравнить размер: новый чип Ivy Bridge занимает примерно на 25 процентов меньше на подложке, но содержит существенно больше транзисторов.

Большее количество транзисторов обычно всегда давали большее количество выделяющегося тепла. Но благодаря интеллектуальным технологиям энергосбережения, потребляют энергию только те области процессора, которые активно используются. В режиме бездействия процессор может отключать отдельные ядра, кэш-память или участки интегрированного графического ядра. Добавьте технологии стробирования DDR3 и GT Power Gating. Из-за меньших структур и транзисторов Tri-Gate Intel даже удалось достичь существенной экономии по энергопотреблению. Кроме того, процессоры Intel Ivy Bridge теперь поддерживают память Low Voltage DDR3 (DDR3L), которая может работать от напряжения 1,35 В, что позволяет экономить несколько ватт.

22-нм транзисторы Intel с технологией Tri-Gate

Intel на нескольких ранее проведенных мероприятиях рассказывала о 22-нм техпроцессе. Но на этот раз мы получили кое-какую свежую информацию о 22-нм техпроцессе: принципиально все современные планарные транзисторы создаются по дизайну, разработанному ещё в 1974 году. Конечно, к нему были применены разные доработки и оптимизации, чтобы минимизировать токи утечки и управлять работой транзисторов при снижении техпроцесса - но к 2000 году с этим особых проблем не было, в отличие от токов утечки. Наши читатели могут вспомнить процессоры Northwood, Prescott и многие другие, которым приходилось бороться с проблемами тепловыделения.

В 2003 году Intel начала переход на 90-нм техпроцесс с технологией растянутого кремния (Strained Silicon) для транзисторов NMOS и PMOS с оксидными затворами, что позволило улучшить их характеристики и ток возбуждения (Drive Current). С переходом на 45-нм техпроцесс Intel анонсировала транзисторы с металлическими затворами High-K, то есть с новым диэлектриком (SiO2) и металлическими затворами на основе гафния. Это вновь позволило улучшить работу транзисторов без появления новых проблем с токами утечки.

В случае же объявления 22-нм транзисторов изменилась уже сама структура этих полупроводниковых элементов.

В качестве примера можно привести слайд 22-нм техпроцесса с прошлогоднего форума Intel для разработчиков, где указаны значения токов утечки при разных токах возбуждения (Drive Current) для разных сценариев. Если требуется быстрый процессор, то можно смириться с высоким токами утечки. С другой стороны, можно оптимизировать процессор под меньшие токи утечки. В итоге, в зависимости от сценария использования, можно реализовать в чипе определенные технологии (высокая производительность, стандартная производительность, низкое энергопотребление).

Можно привести следующие основные преимущества 22-нм техпроцесса Tri-Gate:

  • Существует явное преимущество по токам утечки. При меньшем напряжении транзистор переключается быстрее, поэтому его состояние утечки намного ниже (Off State Leakage).
  • При оптимизации под высокое энергопотребление можно получить то же самое состояние утечки (Off State Leakage), что у планарных транзисторов при намного более высокой скорости переключения.
  • В целом, транзисторы Tri-Gate дают на 37% более высокую скорость переключения при напряжении 0,7 В - или, наоборот, снижают на 50% активное энергопотребление Active Power.
  • Если требуется более высокая производительность, то разработчик процессора может внести некоторые простые изменения, чтобы её получить.

Структура транзисторов хорошо видна по рисунку выше: затвор транзистора лучше "огибает" канальную область, предотвращая серьёзные токи утечки.

Intel использовала для процессоров Ivy Bridge 22-нм техпроцесс P1270. Но в 2013 году планируется переход на 14-нм техпроцесс P1272, тоже разработанный Intel. Компания будет производить новые процессоры на пяти заводах, которые будут переведены на 22-нм техпроцесс или уже работают на нем. Помимо заводов в Орегоне, процессоры будут производить ещё две фабрики в Аризоне, а также завод в Израиле.

Intel будет использовать 22-нм техпроцесс как для традиционных процессоров (Core, Xeon, ...), так и для продуктов SoC (Atom и другие). То есть Intel оптимизирует существующие дизайны под новый техпроцесс Tri-Gate. Intel видит преимущество в подобной диспозиции команд по дизайну, что вписывается в инициативу "Unified Design Approach", в результате чего нынешние команды по дизайну (SoC, CPU) быстрее реагируют на вызовы новых областей рынка.

1. Технологический процесс
2. Частота процессора
3. Тепловыделение
4. Кэш память, уровни
5. Intel, AMD
6. Socket - способ крепления процессора
7. Как выбрать процессор?

Технологический процесс

Процесс развития процессоров, если увлекаться, интересное занятие. Начиналось всё с микросхем, у которых частота измерялась в килогерцах. Затем технологии совершенствовались, транзисторов становилось всё больше и больше, их размеры всё меньше и меньше, тем самым увеличивалась частота, уменьшалось энергопотребление и тепловыделение. В итоге сегодня у нас есть процессоры, частоты которых измеряются в несколько гигагерц, а благодаря уменьшению техпроцесса, есть возможность уместить несколько кристаллов (ядер) в одной подложке и разместить огромное количество транзисторов, плюс добавить память процессору (кэш).

В итоге имеем эффективные многоядерные процессоры с высокой частотой, несколько уровневой памятью, уменьшенным энергопотреблением и сравнительно небольшим тепловыделением.

Технологические процессы начинались от 10 микрометров (мкм - 10 -6) и сегодняшних процессов до 10 нанометров (нм - 10 -9)

В кратце процесс создания: Выплавляется кусок кремния в цилиндрическую форму, затем нарезается на тонкие пластины и на них наносятся микросхемы, затем монтируется это всё в корпус и герметизируется. Все этапы производства очень сложны и высокотехнологичны.

Вот как выглядит пластина с нанесёнными на неё микросхемами.


И немного увеличенный вариант пластины с готовыми кристаллами.

22 нм и 20 нм техпроцессы соответствуют производству сегодняшних процессоров: Intel Ivy Bridge, Intel Haswell (Celeron, Pentium, Core i3, Core i5, Core i7).

Celeron и Pentium из этой группы в современных модификациях. Немного улучшены для доступности в цене, добавлена поддержка 64-х битной разрядности, кэш - память, однако всё равно слабо справляются с современными задачами, особенно Celeron.

Количество транзисторов в процессорах, со времён создания, изменялось от пары тысячь до сегодняшних почти 2-х миллиардов!

Интересно существует ли предел?

Частота процессора

Можно было бы сказать что, чем больше частота тем лучше, но это совсем не так. Лучше, если процессоры сделаны по одной архитектуре. В остальных случаях производительность зависит от архитектуры процессора, уровней и объёма кэш памяти процессора, а так же от частоты системной шины. Если она меньше (она обычно меньше), то частота процессора будет понижаться до её частот и процессор будет простаивать пока данные будут переданы по систмной шине (материнской плате).

Первый процессор был представлен 15 ноября 1971 года и имел частоту 740 кГц. На сегодня самые можные процессоры могут достигать частоты до 5 ГГц.

Ещё одно ошибочное мнение бытует (я сам слышал от некоторых), что если процессор многоядерный и у него частота допустим 2,6Ггц, то каждое ядро работает на этой частоте. Это абсолютно не верно! Это суммарная частота всех ядер. Эту максимальную частотe надо поделить на количество ядер и получится частота одного ядра.

Ниже приблизительный график изменения частоты процессоров (Ггц) и техпроцесса (нм).


Со временем техпроцесс становится меньше, а частота увеличивается и уменьшается энергопотребление.

Тепловыделение (TDP)


Процессоры выделяют большое количество тепла, без охлаждения буквально за четыре секунды могут нагреться до 90 градусов и естественно сгореть, а если есть система защиты от перегрева, то отключить систему.

Поэтому важно следить за состоянием радиатора с кулером, периодически очищать от пыли, при необходимости смазывать кулер или заменить. Перегрев так же может служить следствием торможения и зависания системы.

Если сравнивать тепловыделение между производителями процессоров Intel и AMD, то у последних оно гораздо выше. Что в общем то лично меня не устраивает. Так как процессор будет сильнее греться, следовательно охлаждение будет интенсивней работать, больше нагнетать воздуха и пыль вместе с ним, что приводит к скорейшему засорению радиатора и кулера, нарастанию пыльной корки, закупорки рёбер радиатора, препятствию прохождение воздуха и перегреву, а так же шум от интенсивного вращения кулера, ведь он будет с большей мощностью пытаться охладить систему.

Кэш - память (SRAM), уровни (L1, L2, L3)

Здесь опишу работу в кратце её работу. Обо всех типах памяти можете почитать в статье Оперативное запоминающее устройство (ОЗУ).

У нас есть процессор, у него есть память первого уровня L1, она работает на частоте равной частоте процессора, то есть данные хранящиеся в этой памяти мгновенно поступят для обработки в процессор. Если этих данных в этой памяти нет, то идёт обращение к памяти уровня L2, которая чуть медленнее, но объём её немного больше. Далее, если данных нет в вышестоящей памяти, идёт обращение к памяти уровня L3, если таковая имеется, аналогично она медленнее, но больше. Ну и в последнюю очередь идёт обращение к оперативной памяти.


Пока идёт обращение к оперативной памяти, процессор простаивает. Простой занимает немного времени, какие то доли секунды, но в совокупности это может занять продолжительное время.

Intel, AMD

Именно Intel и AMD являются лидерами рынка по производству процессоров, особенно Intel с долей около 87%.


Не буду начинать с самых древних процессоров, а пробежимся с самых ходовых на сегодняшний день. Список общий, так как в микроархитектуру могут входить и другие техпроцессы под своими кодовыми названиями:

Nehalem (1-е поколение).

  • Intel Celeron; Сокеты: µPGA-988, BGA-1288
  • Intel Pentium; Сокеты: µPGA-988, BGA-1288
  • Intel Core i3; Сокет: LGA1156
  • Intel Core i5; Сокет: LGA1156
  • Intel Core i7; Сокет: LGA1156
  • Intel Core i7 Extreme Edition; LGA1366
  • Intel Xeon; Сокет: LGA1156
  • 64-битные процессоры: EM64T - Микроархитектура Sandy Bridge (2-е поколение)

  • Intel Celeron; Сокет: LGA1155
  • Intel Pentium; Сокет: LGA1155
  • Intel Core i3; Сокет: LGA1155
  • Intel Core i5; Сокет: LGA1155
  • Intel Core i7; Сокет: LGA1155
  • Intel Xeon E3; Сокет: LGA1155
  • 64-битные процессоры: EM64T - Микроархитектура Ivy Bridge (3-е поколение)

  • Intel Core i3; LGA1155
  • Intel Core i5; LGA1155
  • Intel Core i7; LGA1155
  • Intel Core i7 Extreme Edition; Сокет: LGA2011
  • Intel Xeon E7 v2; Сокет: LGA2011
  • 64-битные процессоры: EM64T - Микроархитектура Haswell (4-е поколение)

  • Intel Core i3; Сокет: LGA1150
  • Intel Core i5; Сокет: LGA1150
  • Intel Core i7; Сокет: LGA1150
  • Intel Xeon E5 v3; Сокет: LGA1150
  • В первом и втором поколении Intel Celeron и Intel Pentium не стоит даже рассматривать при покупке, они уже своё изжили, современные задачи не вытягивают.

    i3,i5,i7 разделяются по поколениям очень просто, по первой цифре в маркировке, например:

    Intel Core i3 2100T - 2.5 ГГц, первая цифра в 2100Т это 2, значит процессор второго поколения.

    Intel Core i5 3450 - 3.1 ГГц, первая цифра в 3450 это 3, значит процессор третьего поколения.

    Intel Core i7 4770 - 3.4 ГГц, первая цифра в 4770 это 4, значит процессор третьего поколения.

    Если в маркировке отсутствуют первые цифры 2,3,4, то скорее это процессор первого поколения.

    Рассмотрим линейку процессоров FX от AMD, актуальную на данный момент.

    Микроархитектура AMD для настольных ПК - Bulldozer

    Четырёхядерные процессоры:

  • FX-4100...4170; FX-4300...4350
  • Шестиядерные процессоры:

  • FX-6100...6200; FX-6300...6350
  • Восьмиядерные процессоры:

  • FX-8100...8170; FX-8300...9590
  • Общее отличие между всеми ними это поддержка каких-нибудь технологий, нам не нужных, количеством ядер и частотой процессора. Главное отличие является цена. Я всё же писал что недолюбливаю AMD за огромное тепловыделение, однако можно подобрать модель соизмеримую по мощности с Intel, но дешевле. Хотя если процессор сильнее греется нужно подходящее охлаждение, которое тоже в копеечку обойдётся, так может быть не стоит искать аналог по дешевле?

    Socket - способ крепления процессора

    Socket (Сокет) - специальный разъём на материнской плате, предназначенный для установки процессора. На материнских платах производители указывают какие типы процессоров они поддерживают, на коробке или в описании можно это почитать. И в описании процессоров тоже указывается какие сокеты они поддерживают. Так что будьте внимательны. Это относится и к креплениям радиатора процессора. Крепления радиатора могут быть универсальными, то есть подходить к нескольким сокетам.

    При установке процессора на материнскую плату имеются "ключи" (метки), для правильной установки. Например скошенный угол на процессоре и гнезде или выступы или углубления в подложке процессора и наоборот на разъёме.

    Пример как выглядят метки на Сокете AM3


    Пример Сокета 775

    И последний пример Сокетов LGA 1366, 1150, 1155, 1156. С виду вроде выглядят одинково, но при установке процессора увидите разницу и невозможность неправильной установки в разъём. Нужно читать описание или характеристики.

    Откуда такое разнообразие? Производство процессоров постоянно совершенствуется, меняется количество выводов и для того чтобы небыло путаницы в поддержке и установки процессора, придумывают разные способы крепления.

    Как выбрать процессор?

    Если для игр, то Вам всё равно придётся переплатить за встроенную графику, потому что топовые процессоры идут со встроенным видео, плюс раскошелится на мощную видеокарту. Здесь всё зависит от Ваших предпочтений. Для чего Вы будете использовать компьютер. Если для работы с документами, сёрфинга в интернете, просмотра видео, то подойдёт не самый мощный процессор. Я бы ещё приписал чтобы выбирали не со встроенной графикой, но тенденция такова что практически во все процессоры уже внедряют её. Даже наверное и к лучшему, не нужно отдельно покупать видеокарту.

    Наверное самым оптимальным вариантом на сегодняшний день было бы приобретение процессора i5 от Intel второго поколения, в крайнем случае i3 на сокете LGA1155, так как эти процессоры в более менее доступной категории цен. Процессоры на i7 уж больно дорогие и в будущем, когда цены спадут можно без проблем обновиться до более производительного процессора. По моему остальные модификации не стоит рассматривать, они на сокетах предыдущих поколений, без возможности обновления конфигурации.

    Например у меня до сих пор материнская плата на Socket LGA775 с процессором Intel Core 2Duo с 2008 года. Максимум как я могу его проапгрейдить это добавить оперативной памяти и например, поставить SSD диск. Если я захочу улучшить компьютер мне придётся обновлять весь компьютер, так как моя материнская плата уже не поддерживает процессоры нового поколения, поддержка оперативной памяти только DDR2, а в новых DDR3 или 4.

    Во всяком случае Вам стоит ориентироваться на процессоры, поддерживающими актуальный и распространённый Socket, чтобы с большей вероятностью обновить свою конфигурацию оборудования в будущем. Хотя есть вероятность того что появятся новые виды процессоров и разъёмов, так что покупайте что сейчас актуально на рынке. Ещё есть такой слух что процессоры от Intel будут поддерживать только операционную систему Windows 10 и выше, кому она не по душе, тоже стоит призадуматься.

    Есть такой замечательный сайт CPUBoss , в котором можно сравнить процессоры между собой по производительности, по параметрам и по цене. Так что вбивайте название процессоров и выбирайте лучший для Вас.



    Новое на сайте

    >

    Самое популярное