Домой Стройматериалы Сверлильный станок для печатных плат своими руками: чертежи, фото, видео. Сверлильный станок для печатных плат на базе механизмов дисковых приводов Особенности конструкции станка

Сверлильный станок для печатных плат своими руками: чертежи, фото, видео. Сверлильный станок для печатных плат на базе механизмов дисковых приводов Особенности конструкции станка

Надоело, в общем то, сверлить платы ручной сверлилкой поэтому решено было изготовить небольшой сверлильный станок исключительно для печатных плат. Конструкций в интернете полным полно, на любой вкус.Посмотрев несколько описаний подобных сверлилок, пришел к решению повторить сверлильный станок на основе элементов от ненужного, старого CD ROM’a. Разумеется, для изготовления этого сверлильного станочка придется использовать материалы те, что находятся под рукой.

От старого CD ROM’a для изготовления сверлильного станочка берем только стальную рамку со смонтированными на ней двумя направляющими и каретку, которая передвигается по направляющим. На фото ниже все это хорошо видно.

На подвижной каретке будет укреплен электродвигатель сверлилки. Для крепления электродвигателя к каретке был изготовлен Г-образный кронштейн из полоски стали толщиной 2 мм.

В кронштейне сверлим отверствия для вала двигателя и винтов его крепления.

В первом варианте для сверлильного станочка был выбран электродвигатель типа ДП25-1,6-3-27 с напряжением питания 27 В и мощностью 1,6 Вт. Вот он на фото:

Как показала практика, этот двигатель слабоват для выполнения сверлильных работ. Мощности его (1,6 Вт) недостаточно- при малейшей нагрузке двигатель просто останавливается.

Вот так выглядел первый вариант сверлилки с двигателем ДП25-1,6-3-27 на стадии изготовления:

Поэтому пришлось искать другой электродвигатель-помощнее. А изготовление сверлилки застопорилось…

Продолжение процесса изготовления сверлильного станочка.

Через некоторое время попал в руки электродвигатель от разобранного неисправного струйного принтера Canon:

На двигателе нет маркировки, поэтому его мощность неизвестна. На вал двигателя насажена стальная шестерня. Вал этого двигателя имеет диаметр 2,3 мм. После снятия шестерни, на вал двигателя был надет цанговый патрончик и сделано несколько пробных сверлений сверлом диаметром 1 мм. Результат был обнадеживающим- «принтерный» двигатель был явно мощнее двигателя ДП25-1,6-3-27 и свободно сверлил текстолит толщиной 3мм при напряжении питания 12 В.

Поэтому изготовление сверлильного станочка было продолжено…

Крепим электродвигатель с помощью Г-образного кронштейна к подвижной каретке:


Основание сверлильного станочка изготовлено из стеклотекстолита толщиной 10мм.

На фото – заготовки для основания станочка:

Для того, чтобы сверлильный станочек не ёрзал по столу во время сверления, на нижней стороне установлены резиновые ножки:

Конструкция сверлильного станочка –консольного типа, то есть несущая рамка с двигателем закреплена на двух консольных кронштейнах, на некотором расстоянии от основания. Это сделано для того, чтобы обеспечить сверление достаточно больших печатных плат. Конструкция ясна из эскиза:



Рабочая зона станочка, виден белый светодиод подсветки:

Вот так реализована подсветка рабочей зоны. На фото наблюдается избыточная яркость освещения. На самом деле-это ложное впечатление (это бликует камера)- в реальности все выглядит очень хорошо:

Консольная конструкция позволяет сверлить платы шириной не менее 130 мм и неограниченной (в разумных пределах) длиной.

Замер размеров рабочей зоны:

На фото видно, что расстояние от упора в основание сверлильного станочка до оси сверла составляет 68мм, что и обеспечивает ширину обрабатываемых печатных плат не менее 130мм.

Для подачи сверла вниз при сверлении имеется нажимной рычаг-виден на фото:

Для удержания сверла над печатной платой перед процессом сверления, и возврата его в исходное положение после сверления, служит возвратная пружина, которая надета на одну из направляющих:

Система автоматической регулировки оборотов двигателя в зависимости от нагрузки.

Для удобства пользования сверлильным станочком было собрано и испытано два варианта регуляторов частоты вращения двигателя. В первоначальном варианте сверлилки с электродвигателем ДП25-1,6-3-27 регулятор был собран по схеме из журнала Радио №7 за 2010 год:

Этот регулятор работать как положено не захотел, поэтому был безжалостно выброшен в мусор.

Для второго варианта сверлильного станка, на основе электродвигателя от струйного принтера Canon, на сайте котов-радиолюбителей была найдена еще одна схема регулятора частоты вращения вала электродвигателя:

Данный регулятор обеспечивает работу электродвигателя в двух режимах:

  1. При отсутствии нагрузки или, другими словами, когда сверло не касается печатной платы, вал электродвигателя вращается с пониженными оборотами (100-200 об/мин).
  2. При увеличении нагрузки на двигатель регулятор увеличивает обороты до максимальных, тем самым обеспечивая нормальный процесс сверления.

Регулятор частоты вращения электродвигателя собранный по этой схеме заработал сразу без настройки. В моем случае частота вращения на холостом ходу составила около 200 об/мин. В момент касания сверла печатной платы-обороты увеличиваются до максимальных. После завершения сверления, этот регулятор снижает обороты двигателя до минимальных.

Регулятор оборотов электродвигателя был собран на небольшой печатной платке:

Транзистор КТ815В снабжен небольшим радиатором.

Плата регулятора установлена в задней части сверлильного станочка:

Здесь резистор R3 номиналом 3,9 Ом был заменен на МЛТ-2 номиналом 5,6 Ом.

Испытания сверлильного станка прошли успешно. Система автоматической регулировки частоты вращения вала электродвигателя работает четко и безотказно.

Небольшой видеоролик о работе сверлильного станка.

Вот уже более года я являюсь счастливым обладателем 3D принтера Prusa i4. Если честно, я сегодня не представляю, как раньше справлялся без него. Кстати, это подарок моей любимой супруги!
Но оставим лирику. Сегодня я представляю Вашему вниманию свой вариант сверлильного станка для печатных плат. Всем радиолюбителям хорошо известно, что сверлить плату, держа мотор с патроном в руке дело, как минимум хлопотное. Тут не годятся твердоспланые свёрла из-за их хрупкости. Чуть перекосил и сверло пополам. А обычные свёрла быстро тупятся. Да и ещё входное отверстие получается не ровное, а выходное рваное. Если дорожки на плате тонкие это совершенно не допустимо. От этих проблем избавит-сверлильный станок.
На просторах интернета имеется много готовых проектов. Но все они казались мне (да простят меня их авторы) примитивными игрушками. Один из достойных кандидатов для повторения я нашёл вот здесь: https://www.youtube.com/watch?v=xlxfG9IEH7Y&t=34s .
Однако царапала эстетика. Ведь на принтере можно напечатать всё, что угодно. Так почему бы не сделать это красиво? Я плотно засел Solid Works, а потом и за печать. Ошибки исправлял по ходу дела. И так это третий вариант:

Я разработал несколько вариантов кожухов для различных двигателей. Сразу скажу, что не все движки, что продают на АллиЭкспресс здесь годятся. Вот этот например не пойдёт:

А вот это то,что надо. Движок- 775. Надёжная ось. Передний подшипник. Отсутствие биений.Мощность.

Нужно уточнить у продавца установлен ли подшипник? Двигатели идут в разных исполнениях, в том числе и на втулках.

Верхняя и нижняя крышка легко накручивается на несущий кронштейн и надёжно фиксируют мотор внутри.

Подвижная часть осевого кронштейна собрана на двух продольных подшипниках, которые обеспечивают лёгкость скольжения по осям и закрыты сверху и снизу декоративными накладками:

Кстати на тягах тоже стоят маленькие подшипники.

Станина алюминиевая. В новом очередном варианте станину сделал наборную из оргстекла. Выглядит лучше на мой взгляд. Резал на лазерном станке. Пластик ABS. Печатал слоем 0.1мм. После печати все детали обработаны нулёвкой и тетрагидрофураном.
Ну а это станочек в работе:
https://drive.google.com/file/d/1eVnMHNLl5y7OgC58LfgzOF5cP6kgi_jb/view?usp=sharing
Проект продолжает жить. В следущей модификации я хочу отказаться от рычага. Заменю его шаговым двигателем и беспроводной педалью для управления станком. Всех парней с наступающим Праздником!

Разработка электронной схемы для управления электродвигателями постоянного тока в оптимизированном станке с ЧПУ.

Цель работы: оптимизация изготовления печатных плат с помощью оригинальной конструкции сверлильного станка с ЧПУ.

При изготовлении печатных плат в условиях любительской или учебной лаборатории имеется проблема быстрого сверления отверстии под ножки деталей, по рисунку предварительно спроектированной монтажной схемы. Проблема заключается в большой частоте и малом диаметре отверстий (допустим под микросхему), что делает неудобным и опасным (имеется вероятность скола сверла) проводить процесс сверления вручную.

В процессе работы, используя теоретический метод исследования, мы рассмотрели устройства, предлагаемые другими авторами для решения данной проблемы. Такими устройствами являются всевозможные станки с числовым программным управлением, которые высверливают отверстия на заготовке по предварительно внесенному в программу управления рисунку. Мы изучили основные отличительные особенности данных устройств и выявил их плюсы и минусы. Данные станки работают под управлением различных программ и имеют довольно-таки разное строение, но все же имеется одна черта, которая объединяет все предлагаемые конструкции. Этой чертой является использование в станках шаговых двигателей. Вариант самодельного станка с ЧПУ с применением шаговых двигателей показан на рисунке:

Это понижает плавность работы станка, так как шаговые двигатели работают рывками. Так же применение шаговых двигателей увеличивает стоимость станка, так как стоимость мощных шаговых двигателей начинается от 1500 рублей, а применять их нужно три штуки, либо, при условии применения двигателей меньшей мощности ставить их по два на каждую ось перемещения. Но замена шаговых двигателей на электродвигатели постоянного тока потребовала изменения драйверов управления. Принципиальная схема драйверов управления шаговыми двигателями показана на рисунке:

Электронная часть станка была изменена практически полностью.

Используя практический метод исследования, мы разработали электронную схему, где переключение направления вращения электродвигателей осуществляется с помощью магнитных реле, а сами реле управляются транзисторными ключами. Принципиальная схема драйверов управления электродвигателями постоянного тока показана на рисунке:

Схема работает следующим образом: разработанная в процессе проектирования станка программа управления выдает на выводы LPT порта логические уровни «0» и «1». К соответствующим выводам порта подключены базы транзисторных ключей VT1 – VT7.

Транзисторы VT1 и VT2 управляют электромагнитными реле К1 и К2, к контактом которых подключен двигатель поперечной подачи инструмента в горизонтальной плоскости. С помощью переключения электромагнитных реле осуществляется коммутация питающего напряжения (12В) с контактами электродвигателя М1. При включении реле К1 двигатель М1 начинает крутиться вправо, при включении К2 – влево. Когда оба реле выключены - двигатель находится в положении покоя, так как на оба его контакта подается отрицательный потенциал.

Управление двигателями продольной подачи в горизонтальной плоскости и подъёмом и опусканием инструмента в вертикальной плоскости осуществляется по тому же принципу. Двигатель продольной подачи М2 управляется транзисторами VT3 и VT4 и реле К3, К4. Двигатель подъема и опускания инструмента в вертикальной плоскости (М3) управляется транзисторами VT5 иVT6 и реле К5, К6.

Включение основного рабочего двигателя М4 осуществляется с помощью транзисторного ключа VT7, коллекторной нагрузкой которого, является двигатель.

Используя экспериментальный метод исследования, был собран малогабаритный сверлильный станок с ЧПУ с применением электродвигателей постоянного тока, управляемых с помощью разработанной схемы. Схема управления была собрана на макетной плате. Внешний вид станка с применением электродвигателей постоянного тока показан на рисунке:

Станок использовался в лаборатории объединения «Радиотехник» для изготовления печатных плат для выполнения плановых практических работ, таких как: усилитель постоянного тока, генератор звуковой частоты, мультивибратор и другие.

Авторы: Сорокин Максим, 9 класс (СОШ №30 города Костромы), Фёдоров Дмитрий, 10 класс (СОШ №38 города Костромы)
Руководитель: Шестаков Александр Александрович, педагог дополнительного образования ЦДТ «Содружество», педагог-новатор Российской научно-социальной программы «Шаг в будущее»

Центр детского творчества города Костромы «Содружество»
Объединение «Радиотехник»


При изготовление самодельных печатных плат такие тонкие отверстия не очень нужны, но типовые свёрла диаметром от 0,5 до 0,7 мм тоже достаточно хрупкие и это технологическое приспособление может существенно продлить срок их службы.

Основой конструкции данного станка является асинхронный двигатель переменного тока типа АДП-1262. Ротор этого двигателя представляет из себя пустотелый алюминиевый стакан с толщиной стенки приблизительно 0,5мм. Статор АДП-1262 занимает всё остальное свободное пространство. В нем имеется узкая цилиндрическая щель, в которой с очень маленьким зазором вращается ротор. Понятно, что вес такого ротора ничтожно мал, поэтому его инерционными свойствами в первом приближении можно пренебречь, особенно учитывая вес зажимного патрона. Кроме всего прочего, двигатель обладает очень мягкой характеристикой. При уменьшение оборотов двигателя, уменьшается и момент силы на валу. Всё это гарантирует долгий срок службы любым тонких свёрлам в случае заклинивания и при превышении допустимого максимального вращающего момента на режущей кромке.

В роли держателя свёрл я взял достаточно широко распространенный трёх кулачковый патрон типа 6В10, который позволяет зажимать свёрла диаметром до 6мм.

Станина сделана из двух основных частей. Стойка позиция 1 и реечный механизм позиция 2 взяты от оптического микроскопа МБС-1. Основание позиции три вырезано из стального листа толщиной 1 сантиметр.

Двигатель крепится помощью хомута, который закреплен к подающему механизму 4 винтами. Они показаны красными стрелками на рисунке выше. Отверстия сделаны в вершинах квадрата, поэтому двигатель можно разместить не только вертикально, но также и горизонтально.

Патрон крепится с помощью фасонной втулки, с наружной стороны которой протачивается конус №1, а внутри сделано отверстие под переходную посадку, равную диаметру вала двигателя около 6мм. Втулка изготовлена на токарном станке за один присест. То есть, во время проточки конуса и отверстия (не сверления), заготовка была закреплена в станке и лишь только потом отрезана.

Для отличной фиксации и выбора вполне вероятной несоосности, во втулке есть шесть резьбовых отверстий М3 для стопорных винтов. В валу двигателя имеется 6 углублений, в которые и встают данные стопорные винты. Отверстия проделываются в шахматном порядке, что позволяет гарантированно выбрать несоосность, если она даже появится в результате износа сопрягаемых поверхностей. Винты стопорятся стопорной краской или фиксатором резьбы.

На верхнем вылете вала двигателя имеется закрепленный фланец с небольшой прорезью, который вместе с планкой на корпусе двигателя есть ничто иное как классический стопорный механизм. Он позволяет в ручную затягивать патрон без применения ключа. Применение ключа асимметрирует зажимной механизм и приводит к сильному и неравномерному износу, что является основной причиной биения сверла. При использовании тонких свёрл, это вызывает ощутимый эксцентриситет рабочей части сверла.

Сейчас аппаратура быстро устаревает. Всё, что остаётся не у дел, надо снова пускать в дело!
Например, механизмы приводов компакт-дисков применимы для постройки сверлильного станка.

Нам потребуется:
1) Кусок ДСП, лучше ЛДСП - станок должен быть красивым
2) Два механизма от CD привода
3) Уголок 25×25 … 35×35 из алюминия или дюралюминия Д16-Т, некритично
4) Труба прямоугольная 15×30 (размер важен)
5) Электродвигатель диаметром 25 мм, с максимально возможным количеством оборотов в минуту, например, типа ДПМ-25
6) Кнопка любая
7) Сверло перовое 25 мм
8) Винты М3 с гайками, саморезы
9) Кусок древесины, желательно твёрдых пород, отлично подходит 12 мм фанера - 12×27х30…50 мм

Итак, приступаем.
Размеры станка определяйте сами, они будут зависеть от максимального размера плат, которые вы будете изготавливать, плюс расстояние от механизмов до центра.
В механизмах CD приводов удалите электродвигатель привода диска, лазерную головку. Прямоугольная труба становится вместо лазерной головки идеально.


В прямоугольную трубу плотно вставьте 2 куска древесины длинной по 30-50 мм на клею или дополнительно закрепите саморезами.

В в верхней стенке прямоугольной трубы по центру просверлите отверстие 25 мм, в нижней стенке отверстие для вала двигателя.


Закрепите двигатель.

Закрепите оба механизма саморезами на прямоугольной трубе. В куске ЛДСП сделайте 2 пропила, закрепите всё это на куске ЛДСП. Сверху закрепите уголок с кнопкой S2 (см. схему).

Несколько крупных белых светодиодов освещают рабочую поверхность.


Трансформатор питания можно применить на 20-30 Ватт, напряжение вторичной обмотки зависит от вашего двигателя.

Конструкция «педали» понятна из фотографии. Два отрезка ДСП, мебельная петля и микропереключатель.

Перекос не возникает, после подъёма происходит выравнивание автоматически, у меня после годовой эксплуатации ни разу перекоса не было, двигатели подъёма вращаются синхронно.

Цангу закрепляю на двигателе и винтами юстирую до минимальных биений , т.к. твёрдосплавные свёрла при малейших биениях ломаются.
Мне удалось выставить практически без биений.

Видео сверлильного станка в работе



Новое на сайте

>

Самое популярное