Домой Коммуникации Как сделать безусадочный цементный раствор. Марки и применение цемента вбц влагостойкого и безусадочного

Как сделать безусадочный цементный раствор. Марки и применение цемента вбц влагостойкого и безусадочного

Бетоны на основе ранее рассмотренных гидравлических вяжущих при твердении на воздухе уменьшаются в объеме, т.е. их твердение вызывает усадку - крайне негативное явление, сказывающееся на качестве готовых конструкций.

Объемные усадочные деформации - одна из главных причин появления в бетоне трещин, снижающих долговечность инженерных сооружений. В связи с этим в настоящее время применяют новые виды цементов, процесс твердения которых в начальный период сопровождается либо увеличением объема цементного камня (так называемые расширяющиеся цементы), либо компенсированием усадки цемента (безусадочные цементы).

Суть этих явлений заключается в следующем. При гидратации всех минеральных вяжущих их абсолютный объем вследствие химической контракции уменьшается. В случае же применения расширяющегося цемента его объем при затворении водой увеличивается. Такое «неожиданное» увеличение объема может происходить только при условии соблюдения следующего неравенства:

где Ц - масса цемента, г; р ц - плотность цемента, г/см 3 ; В - масса воды, г; Ц х - масса цемента, не вступившего в реакцию с водой, г; В х - масса воды, не вступившей в реакцию с цементом, г; р г - средняя плотность продуктов гидратации цемента, г/см 3 ; а - объем пор цементного камня, см 3 .

Из приведенного неравенства следует, что расширение цементного камня должно сопровождаться увеличением объема пор вследствие «раздвижки» гидратирующих цементных зерен, что и учитывается увеличивающимся объемом пор цементного камня (а). По мнению П.П. Будникова и И.В. Кравченко, такая раздвижка вызывается значительным кристаллизационным давлением растущих кристаллов «цементной бациллы» - гидросульфоалюмината кальция (ЗСа0А1 2 0 3 3CaSO 31Н 2 0).

Известно, что необходимый компонент «бациллы» - гидроалюминаты кальция (ЗСа0А1 2 0 3 6Н 2 0) - образуется при твердении глиноземистого цемента. Поэтому расширяющиеся и безусадочные цементы в своем составе обязательно содержат глиноземистый цемент. Другим «стандартным» компонентом является двуводный гипс. Остальные компоненты состава расширяющегося цемента могут быть представлены портландце- ментным клинкером или другими активными минеральными добавками. Название расширяющегося цемента зависит от его состава (табл. 4.7):

  • ? гипсоглиноземистый цемент;
  • ? быстросхватывающийся расширяющийся портландцемент;
  • ? водонепроницаемый расширяющийся цемент (ВРЦ);
  • ? напрягающий цемент.

Виды расширяющегося цемента и их параметры

Таблица 4.7

Линейное

расширение

Основные

компоненты

Специальные

компоненты

Гипсоглиноземистый расширяющийся цемент

Глиноземистый цемент 70 %, двуводный гипс 30 %

Быстросхваты- вающийся расширяющийся портландцемент

Портландцементный клинкер 69...75 %, полуводный гипс 9... 11 %

Сульфоалю- минатный продукт 16...20 %

Водонепроницаемый расширяющийся цемент

Цементный клинкер

  • 60.. .65 %, двуводный гипс 7... 10 %, активная минеральная добавка
  • 20.. .25 %

Высокоглиноземистые доменные шлаки 5...7 %

1 сут. - 0,15 %; 28 сут. - 0,3... 1 %

Напрягающий

Портландцемент 65... 75 % , двуводный гипс 10... 16 %

Глиноземистый цемент 13...20 %

Наибольшее применение нашли гипсоглиноземистый расширяющийся цемент, расширяющийся портландцемент и напрягающий цемент.

Гипсоглиноземистый расширяющийся цемент - быстродействующее гидравлическое вяжущее вещество, получаемое совместным тонким помолом высокоглиноземистых доменных шлаков (70 %) и природного двуводного гипса (30 %) или тщательным смешиванием тех же материалов, измельченных раздельно.

Начало схватывания должно наступать не ранее 20 мин, конец - не позднее 4 ч от начала затворения.

Гипсоглиноземистый цемент расширяется только при твердении в воде; при твердении на воздухе он является безусадочным.

Предел прочности при сжатии через 1 сут. твердения должен быть 35 МПа (марка 400) и 50 МПа (для марки 500). Марки цемента соответствуют трехдневному возрасту.

Данный цемент применяют для получения безусадочных и расширяющихся водонепроницаемых бетонов, для гидроизоляционных штукатурных работ, для укрепления скважин и др.

Расширяющийся портландцемент - быстротвердеющее гидравлическое вяжущее вещество, получаемое совместным тонким помолом портландцементного клинкера, высокоглиноземистого шлака, двуводного гипса и доменного гранулированного шлака.

Цементный камень на расширяющемся портландцементе в начальный период твердения увеличивается в объеме на 0,3... 1,2 %, в связи с чем бетоны и растворы на этом вяжущем обладают большей водопроницаемостью по сравнению с бетонами на обычном цементе.

Бетоны на таком цементе позволяют сокращать сроки их пропаривания для получения проектной отпускной прочности.

Расширяющийся портландцемент применяют при изготовления бетонов и растворов для заделки стыков и омоноличи- вания железобетонных конструкций.

Напрягающий цемент (НЦ ) - быстросхватывающееся и быстротвердеющее гидравлическое вяжущее вещество, получаемое совместным помолом портландцементного клинкера (65...70 %), двуводного гипса (8... 15 %) и высокоглиноземистого компонента (10...20 %). Тонкость помола не менее 4000 см 2 /г. Срок начала схватывания - не ранее 30 мин, конца схватывания - не позднее 4 ч. Характеризуется повышенными показателями водо- и газонепроницаемости, морозостойкости, прочности на растяжение и изгиб. Обладает способностью к значительному расширению (до 3,5...4 %) при твердении. Марки цемента 400 и 500.

В железобетоне НЦ создает после отвердевания предварительное напряжение арматуры, что используется при изготовлении предварительно напряженных железобетонных конструкций. Этот вид цемента используют также для гидроизоляции шахт, подвалов, зачеканки швов, для строительства дорожных и аэродромных цементобетонных покрытий.

Глиноземистый цемент - быстротвердеющее и высокопрочное гидравлическое вяжущее вещество, получаемое путем тонкого измельчения клинкера, содержащего преимущественно низкоосновные алюминаты кальция. Однокальциевый алюминат определяет быстрое твердение и другие свойства глиноземистого цемента. В небольших количествах в нем также содержатся другие алюминаты кальция и алюмосиликат кальция - геленит. Силикаты кальция представлены небольшим количеством белита.

Для получения клинкера глиноземистого цемента сырьевую смесь, составленную из известняка и боксита, подвергают спеканию (при температуре около 1300С или плавлению (при 1400С). Глиноземистый клинкер размалывается труднее, чем клинкер портландцемента, поэтому на помол затрачивается больше электроэнергии. Кроме того, бокситы представляют собой ценное сырье, используемое для производства алюминия. Эти и другие обстоятельства повышают стоимость глиноземистого цемента и ограничивают его выпуск.

Глиноземистый цемент обладает высокой прочностью, если он твердеет при умеренной температуре (не выше 25С), поэтому глиноземистый цемент нельзя применять для бетонирования массивных конструкций из-за разогрева бетона, а также подвергать тепловлажностной обработке.

Если же температура бетона превысит 25-30С, то наблюдается переход двухкальциевого гидроалюмината в кубический трехкальциевый гидроалюминат, который сопровождается возникновением внутренних напряжений в цементном камне и понижением прочности бетона в 2-3 раза.

Замечательным свойством глиноземистого цемента является его необычно быстрое твердение. Марки глиноземистого цемента, определяемые по результатам испытания образцов 3-суточного возраста: 400, 500 и 600. уже через 1 сут глиноземистый цемент набирает высокую прочность.

Т А Б Л И Ц А. показатели прочности глиноземистого цемента.

Марка глиноземистого цемента

Предел прочности при сжатии, кг/см (МПа), не менее

Через 1 сут

Через 3 сут

Начало схватывания глиноземистого цемента должно наступать не ранее чем через 30 мин (портландцемента не ранее чем через 45 мин), а конец - не позднее чем через 12 ч от начала затворения.

Тепловыделение глиноземистого цемента при твердении примерно в 1,5 раза больше тепловыделения портландцемента (250-370 кДж/кг).

Глиноземистый цемент применяют в специальных сооружениях, при спешных ремонтных и монтажных работах, для изготовления жаростойких бетонов и растворов. Кроме того, он входит в состав многих расширяющихся цементов.

6. Расширяющиеся и безусадочные цементы.

Портландцементный камень при твердении на воздухе высыхает и претерпевает усадку, которая нередко является причиной усадочных трещин. Чтобы плотно заделать шов между сборными элементами конструкций и получить практически непроницаемый раствор, или бетон, необходимо использовать вяжущее вещество, способное после затворения в начальный период твердения увеличивать свой объем без структурных нарушений. Расширяющиеся цементы обладают контролируемым расширением , которое, проявляясь в стесненных условиях, вызывает самоуплотнение цементного камня (и бетона). Растворы и бетоны на расширяющихся цементах проктически непроницаемы для воды и нефтепродуктов (керосина, бензина и др.), которые вследствие малого поверхностного натяжения легко просачиваются через капиллярные поры портландцементного камня.

Водонепроницаемый расширяющийся цемент (разработан В.В.Михайловым) является быстросхватывающимся и быстротвердеющим гидравлическим вяжущим. Его получают путем тщательного смешивания глиноземистого цемента (~70 %), гипса (~20 %) и молотого специально изготовленного высокоосновного гидроалюмината кальция (~10 %).

Гипсоглиноземистый расширяющийся цемент (разработан И.В.Кравченко) - быстротвердеющее гидравлическое вяжущее, получаемое совместным тонким измельчением высокоглиноземистых клинкера или шлака и природного двуводного гипса (до 30 %) или тщательным смешиванием тех же материалов, измельченных раздельно. Гипсоглиноземистый цемент обладает свойством расширения при твердении в воде; при твердении на воздухе он проявляет безусадочные свойства. Применяется для омоноличивания стыков сборных конструкций, гидроизоляционных штукатурок, плотных бетонов в железобетонном судостроении и при возведении емкостей для хранения нефтепродуктов.

Расширяющийся портландцемент - гидравлическое вяжущее вещество, получаемое совместным тонким измельчением следующих компонентов (% по массе): портландцементного клинкера 58-63; глиноземистого шлака или клинкера 5-7; гипса 7-10; доменного гранулированного шлака или другой активной минеральной добавки 23-28. расширяющийся портландцемент отличается быстрым твердением в условиях кратковременного пропаривания, высокой плотностью и водонепроницаемостью цементного камня, а также способностью расширяться в водных условиях и на воздухе при постоянном увлажнении в течении первых 3 сут.

Напрягающий цемент (разработан В.В.Ммихайловым), состоит из 65-75% портландцемента, 13-20% глиноземистого цемента и 6-10% гипса; его удельная поверхность не менее 3500 см/г. В процессе расширения в определенных условиях твердения этот цемент создает в арматуре, независимо от ее расположения в железобетонной конструкции, предварительное напряжение. Следовательно, химическая энергия вяжущего вещества используется для получения предварительно напряженных конструкций без применения механических или термических способов, требующих специального оборудования.

В зависимости от достигаемой энергии самонапряжения, определяемой по специальной методике и выражаемой в МПа, выделяют: НЦ=2, НЦ=4 и НЦ=6. начала схватывания НЦ должно наступать не ранее чем через 30 мин и конец - не позднее чем через 4 ч после затворения. Напрягающий цемент быстро твердеет, прочность НЦ при сжатии через 1 сут должна быть не менее 15 МПа, через 28 сут твердения - 50 МПа.

Самонапряженные железобетонные конструкции на НЦ отличаются повышенной трещиностойкостью, поэтому НЦ применяют для газонепроницаемых конструкций, хранилищ бензина, подводных и подземных напорных сооружений, спортивных объектов.

Использование водонепроницаемых материалов для приготовления бетонной смеси существенно упрощает проведение строительных работ. При необходимости заливки бетона или изготовления монолитных конструкций целесообразно применять безусадочный цемент. Кроме отсутствия свойства усадки он способен обеспечить интенсивное схватывание и затвердевание в короткие сроки.

В современном строительстве осуществляется возведение зданий и сооружений не только в умеренном климате и с нормальным уровнем грунтовых вод, но и в условиях повышенной влажной среды, болотистых местностях и затопленных территориях. Для устройства плотин, дамб, бетонных каналов применяется водостойкий цемент, который будет соответствовать всем требованиям водонепроницаемости и стойкости к агрессивным средам.

Маркируется как ВБЦ и вбирает в себя добавки, которые способны повысить технические характеристики. Также в составе присутствует глиноземистый цемент и оксид алюминия. Они обеспечивают отличные вяжущие свойства и уменьшают время схватывания. Дополнительно в основу безусадочной смеси входят боксит и известняк, добывающиеся непосредственно на территории Российской Федерации.

К основным факторам ВБЦ относится следующее:

  1. Количество цемента от общего объема должно составлять 85%, вхождение асбеста не превышает 5%, а пропорции извести и гипса неоднозначны (зависит от назначения раствора).
  2. В заводском производстве изготовление водонепроницаемого материала опирается на тщательное перемалывание цемента, а также добавление кальцинированной извести и гипсовой муки.
  3. По принципу действия при затвердевании образуется кристаллизация алюминатов кальция. Далее учитываются способности к противодействию расширению, что способствует высокой степени уплотнения бетона. Благодаря этому раствор становится водонепроницаемым и получает отличные гидроизоляционные качества.

Все характеристики начинают проявляться спустя 1-1,5 часа после изготовления материала. По истечению 28-30 дней он полностью затвердевает и приобретает лучшие эксплуатационные и прочностные свойства. За счет того, что быстротвердеющий водонепроницаемый цемент используется в достаточно влажной среде, он должен отвечать антикоррозийным требованиям.

Именно эти качества не позволяют ржаветь и разрушаться арматурным стержням и закладным деталям. Для их достижения в состав добавляется алюминиевый порошок, азотнокислый кальций и ферросилиций как вяжущее вещество. Пропорциональное количество наполнителей может варьироваться, в связи с этим меняется и стоимость продукции.

Технические свойства раствора

1. Водостойкий цемент обладает напрягающими и расширяющими качествами с несущественной усадкой. Это относится как к пластическим, так и схватывающимся показателям. Срок затвердевания – 2-3 суток.

2. Реопластичность – это характеристика текучести при минимальном количестве воды. В пропорциональном соотношении ее достаточно около 20-30% на 3 кг сухой смеси. При замешивании 25 кг объем готового состава на выходе – 16,5-17 литров. Однако консистенция в этой пропорции получается весьма жидкая, поэтому ее практично использовать для заливки бетонных изделий или конструкций в опалубку.

3. Благодаря высокой текучести появляются такие свойства, как хорошая удобоукладываемость и повышенный коэффициент плотности на ранней и конечной стадии применения. Обладает отличными опеофобными характеристиками, то есть стойкостью к воздействию углеводородов и масляных составов.

4. Получаемый вязкий бетон по пропорциям совпадает с тем, у которого пониженная осадка конуса, при этом водоотделение практически отсутствует. Также ценится за высокую устойчивость к влиянию сульфатных соединений. Из-за малого количества воды в составе безусадочного раствора требуется периодическая обработка специальными средствами по уходу за бетоном в процессе высыхания. Если этого не делать, тонкий заливочный слой может начать трескаться из-за быстроты схватывания.

Область применения

Основным назначением является изготовление изолирующих оболочек элементов в масштабных железобетонных сооружениях, которые используются для фильтрации воды. Также она выступает в качестве гидроизолирующего материала в подземных туннелях или каналах под водным массивом. Благодаря высокой водонепроницаемости ей можно ремонтировать или заделывать швы в крупнопанельных зданиях.

ВБЦ подбирается в условиях высокой влажности от 70% и выше, так как в достаточно сухих помещениях до 65% смесь способна давать значительную усадку. Этот вид цемента подбирается для защиты бетонных конструкций от воздействия влагосодержащих хлоридов, сульфитов и едких сульфатов.

Кроме всего прочего быстросхватывающийся цемент разрешается применять для таких видов работ:

  1. Заливка монолитных систем при пониженной влажности, а также при устройстве на достаточно большой высоте от уровня земли (более 200 м).
  2. Замешивание растворов для замоноличивания закладных деталей, анкерных элементов, петель. Дополнительно назначается для цементирования тонких швов и стыков в каменной или кирпичной кладке.
  3. Заделка трещин и дефектов бетонных изделий после влияния высоких механических напряжений, а также в процессе эксплуатации.
  4. Изготовление густоармированных ЖБИ, заливка стыков в сборных элементах зданий.
  5. Устройство фундаментов или фундаментных подушек для АЭС, портов, пирсов и турбогенераторов.
  6. Ремонтные работы в промышленных предприятиях, где используются смазочные или топливные смеси, минеральные масла, а также восстановление предварительно напряженных конструкций, на которые воздействуют нормальные или эксцентричные усилия.

Современные производители изготавливают материалы по индивидуальным технологиям и выпускают под своими торговыми марками – ГИДРО-SI, НЦ 10, Master Emaco A 640 (MacFlow) и другие.

ГЛАВА 1. СОСТОЯНИЕ ВОПРОСА И ЗАДАЧИ 12 ИССЛЕДОВАНИЯ

1.1. Анализ существующих стыковых соединений сборных 12 железобетонных конструкций

1.2. Виды омоноличивающих составов для устройства стыков 17 сборных железобетонных конструкций

1.2.1 Омоноличивающие составы на основе портландцемент

1.2.2 Омоноличивающие составы на основе полимерных смол

1.2.3 Омоноличивающие составы на основе расширяющихся 24 цементов с «сульфоалюминатным» принципом расширения

1.3. Модификация как способ интенсификации расширяющих 37 деформаций цемента, твердеющего в среде с пониженной влажностью

1.4. Выводы по главе

ГЛАВА 2. ХАРАКТЕРИСТИКА ИСХОДНЫХ МАТЕРИАЛОВ. 42 МЕТОДЫ ИССЛЕДОВАНИЯ И ИСПЫТАНИЙ

2.1. Характеристика исходных материалов

2.2. Реологические и технологические методы испытания и 46 исследования цементных композиций

2.3. Физико-механические методы испытания цементных 49 композиций

2.4. Физико-химические методы анализа

2.5. Электрофизические методы исследования

2.6. Методы исследования фазового состава цементного камня

2.7. Физико-механические методы исследования в стыковых 53 соединениях

2.8. Статистическая обработка результатов

ГЛАВА 3. МОДИФИКАЦИИ РЯДОВОГО

ПОРТЛАНДЦЕМЕНТА ДОБАВКАМИ,

ИНТЕНСИФИЦИРУЮЩИМИ ЕГО РАСШИРЕНИЕ

3.1. Подбор состава расширяющегося компонента и исследование 59 его влияния на свойства портландцемента

3.2. Физико-химическое обоснование выбора модификаторов, 67 интенсифицирующих образования гидросульфоалюмината кальция высокосульфатной формы

3.3. Выводы по главе

ГЛАВА 4. ИССЛЕДОВАНИЕ ТЕХНОЛОГИЧЕСКИХ И 104 ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ МОНТАЖНОГО

РАСТВОРА

4.1. Разработка состава монтажного раствора по цементно-песчаному 104 соотношению

4.2. Технологические свойства монтажного раствора

4.3. Физико-механические свойства монтажного раствора

4.3.1. Деформации усадки-расширения монтажного раствора

4.3.2. Прочность монтажного раствора

4.3.3. Водопоглощение и показатели пористости монтажного 117 раствора

4.4. Выводы по главе

ГЛАВА 5. ХАРАКТЕР ВЗАИМОДЕЙСТВИЯ МОНТАЖНОГО 120 РАСТВОРА С БЕТОНОМ КОНСТРУКЦИИ И АРМАТУРНЫМИ СВЯЗЯМИ В СТЫКОВОМ СОЕДИНЕНИИ

5.1. Когезионно-адгезионные свойства монтажного раствора и старого» бетона

5.2. Моделирование работы стыкового соединения, омоноличенного 122 монтажным раствором

5.3. Моделирование деформаций усадки-расширения монтажного 125 \ раствора в стыке

5.4. Защитные свойства монтажного раствора по отношению 127 к стальной арматуре

5.5. Выводы по главе

ГЛАВА 6. ТЕХНИКО-ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ 130 И ОПЫТНО-ПРОМЫШЛЕННОЕ ВНЕДРЕНИЕ МОНТАЖНОГО РАСТВОРА

6.1. Расчет технико-экономической эффективности сухой монтажной 130 смеси

6.1.1 Сравнение себестоимости 1 т сухой монтажной смеси со 130 стоимостью 1 т сухой «напрягающей» смеси

6.1.2. Расчет себестоимости 1 т сухой монтажной смеси

6.2. Разработка технических условий и технологического регламента 133 на производство сухой монтажной смеси

6.3. Защита результатов исследования патентом на изобретение

6.4. Условия и результаты промышленной проверки

6.4.1. Натурное испытание монтажного раствора в стыках колонн

6.4.2. Натурное испытание монтажного раствора на фрагменте 138 сборно-монолитного каркаса здания

6.4.3. Промышленное использование разработанного монтажного раствора

6.5. Выводы по главе

Актуальность работы. Особенностью современного строительства в России является внедрение новых и модернизация существующих конструктивных решений каркасно-связевых систем зданий различного назначения из сборного и сборно-монолитного железобетона. В рамках национального проекта «Доступное и комфортное жилье» на 2002-2010 годы в регионах России реализуются, хотя и медленно, мероприятия, связанные с модернизацией заводов ЖБИ, КПД и ДСК, с целью перехода от традиционных конструктивных систем к более эффективным, обеспечивающим гибкость планировки зданий и высокое качество строительства. . В результате достигнут даже некоторый подъем объемов выпуска сборного железобетона в период с 1999 г. по 2004 г. на 6,23 У млн. м . В то время как в России растет доля монолита, на Западе наблюдается устойчивая тенденция развития сборного железобетона (в т.ч. КПД). Свидетельством этому служит ряд специальных конгрессов по сборному железобетону, прошедших во Франции, Англии, Финляндии и даже США - стране, традиционно ориентированной на монолитное строительство .

Одновременно с этим в нашей стране значительно возрос интерес и к монолитному железобетону, который существенно улучшает объемно-планировочные и архитектурно-выразительные решения зданий, предлагая потребителю разнообразное и комфортное жилье. Особенное распространение монолитный железобетон получил в таких городах как Санкт-Петербург, Москва, в республиках Чувашия и Татарстан, в Свердловской, Челябинской и других областях.

Рациональное сочетание сборного и монолитного железобетона взаимно компенсирует недостатки обоих типов, и позволяет создавать новые каркасные системы сборно-монолитного типа (например, сборно-каркасномонолитная система домостроения «Аркос», разработанная БелНИИС, безригельная каркасная система типа «КУБ», французские сборно-монолитные каркасные дома системы «САРЕТ» и др.).

Разнообразие каркасных систем ведет к разнообразию стыков их элементов, от качества которых зависит прочность, жесткость и надежность всей конструкции. Одним из немногих эффективных стыков ЖБК, в частности, колонн является бессварной «колодцевый», в котором выпуски арматуры одной конструкции замоноличиваются в специальных углублениях I (колодцах) в бетоне другой. Основным эксплуатационно-техническим требованием к конструкции бессварного стыка (штепсельный, муфтовый, гильзовый и др.) является его монолитность и равнопрочность. А это определяется, в первую очередь прочностью омоноличивающего материала и его сцепления (адгезии) с бетоном и арматурными выпусками сопрягаемых конструкций.

Для стыковых соединений в массовом сборном и сборно-монолитном строительстве применяются мелкозернистые смеси на основе ^ расширяющихся цементов (напрягающего, гипсоглиноземистого, расширяющегося портландцемента, цемента с компенсированной усадкой), которые устраняют и ослабляют главный недостатокбетонов на основе рядового портландцемента - усадочные деформации. Однако, эффект расширения, при всех достоинствах названных цементов, реализуется в них лишь при поступлении в твердеющий состав влаги извне. А это зачастую трудно обеспечить в реальных условиях. В частности, это проблематично для указанного выше бессварного стыка с частично или полностью закрытым объемом. Подтверждением этому являются исследования Михайлова, Кравченко, Тейлора, Ларионовой, Рояка и др., которыми установлено, что твердение расширяющихся цементов в воде сопровождается интенсивным расширением, в нормально-влажностных условиях - незначительным расширением, а в воздушо-сухих условиях сопровождается даже усадкой.

Поэтому, весьма актуальным является поиск способов интенсификации собственных деформаций расширения омоноличивающих композиций, изготовленных на рядовых портландцементах. При этом остаются постоянными задачи улучшения их технологических свойств, повышения прочности и долговечности. Решение этих задач, по нашему мнению, возможно путем модификации портландцемента комплексными полифункциональными добавками, способными направленно регулировать физико-химические процессы гидратации компонентов вяжущего и структурообразования цементного камня.

Цель исследования. Разработка безусадочного монтажного раствора с повышенными технологическими и физико-механическими показателями путем модификации портландцемента добавками, обеспечивающими его твердение с расширением в стыках с ограниченным доступом влаги.

В соответствии с поставленной целью определены следующие задачи исследования:

Обосновать с позиции физико-химии твердения цементов выбор функциональных компонентов комплексного модификатора;

Исследовать структурообразование с расширением цементного камня при гидратации модифицированного портландцемента с целью оптимизации состава комплексного модификатора и его содержания;

Исследовать реологические характеристики модифицированных цементных композиций и изучить технологические и физико-механические свойства монтажного раствора на их основе;

Провести механические испытания стыков для определения характера разрушения, несущей способности и деформативности;

Разработать технологию изготовления сухой монтажной смеси, выпустить опытную партию и применить её в стыках колонн жилых зданий.

Научная новизна.

Обоснована и экспериментально подтверждена возможность интенсификации образования гидросульфоалюмината кальция высокосульфатной формы при твердении портландцемента в среде с пониженным влагосодержанием путем введения комплексного модификатора, способного обеспечивать безусадочность монтажного раствора;

Выявлен механизм интенсифицирующего влияния добавок сульфата натрия и С-3 на образовании эттрингита (ГСАК-3), заключающийся в понижении концентрации гидроксида кальция и увеличения щелочности при твердении портландцемента с расширяющим компонентом;

Установлено, что механизм положительного влияния суперпластификатора С-3 на расширение цементного камня связан с уменьшением открытой и капиллярной пористости и увеличением доли свободной (неадсорбированной) воды (9-10 %), вступающей в реакцию образования эттрингита.

Практическая значимость работы. Разработаны оптимальные составы комплексного модификатора портландцемента и на их основе безусадочного монтажного раствора с повышенными технологическими и эксплуатационно-техническими характеристиками для омоноличивания стыков сборных железобетонных конструкций зданий и сооружений (патент №2259964 от 05.04.04).

Разработаны технические условия и технологический регламент на производство сухой монтажной смеси, состоящей из портландцемента, комплексного модификатора и песка. Получены положительные результаты опытно-промышленных испытаний монтажного раствора.

Внедрение результатов работы. На основе результатов проведенных исследований на базе кафедры ТСМИК Казанского государственного архитектурно-строительного университета изготовлено 2,5 тонны сухой монтажной смеси, которая была использована для омоноличивания 158 стыков железобетонных колонн при строительстве пятиэтажного жилого дома сборно-монолитного типа в г. Казани.

Достоверность результатов экспериментальных исследований и выводов обеспечена:

Соответствием полученных результатов с общими положениями физико-химии и структурообразования цементных композиций; использованием поверенного оборудования при испытании материалов, современных методов исследования структуры и свойств цементного камня (РФА, ДТА, комлексонометрия, потенциометрия, тепловыделение) и статистической обработкой результатов;

Испытанием фрагмента железобетонного сборно-монолитного каркаса здания, горизонтальные стыки колонн которого были омоноличены разработанным монтажным раствором. Показано, что узлы каркаса обладают достаточной несущей способностью, жесткостью и трещиностойкостью и соответствуют требованиям действующих норм на проектирование. Это позволило рекомендовать разработанный состав монтажного раствора при строительстве сборных железобетонных каркасов зданий.

Апробация работы. Основные результаты проведенных исследований докладывались и обсуждались на: всероссийской конференции «Теория и практика повышения эффективности строительных материалов» (Пенза, 2006 г.), десятых академических чтениях РААСН «Достижения, проблемы и направления развития теории и практики строительного материаловедения» (Пенза-Казань, 2006 г.), V республиканской научно-практической конференции молодых ученых и специалистов «Наука. Инновация. Бизнес» (г.Казань, 2005), международной научно-технической конференции «Актуальные проблемы современного строительства» (Пенза, 2005г.), ежегодных республиканских научных конференциях Казанского государственного архитектурно-строительного университета (2003-2006 г.г.).

Публикации. По материалам выполненных исследований опубликовано 9 печатных работ, включающих 6 статей, 2 тезиса и патент №2259964 «Сухая цементно-песчаная смесь». За разработку монтажного раствора Академией наук РТ совместно с Инвестиционно-венчурным фондом автору вручен диплом на республиканском конкурсе «50 лучших инновационных идей Республики Татарстан».

Структура и объем работы. Диссертационная работа состоит из введения, 6 глав, основных выводов, списка используемой литературы из 156 наименований, изложена на 159 страницах машинописного текста, содержит 46 рисунка, 29 таблиц, 5 приложений.

Заключение диссертации

ОСНОВНЫЕ ВЫВОДЫ

1. С целью разработки безусадочного цементного монтажного раствора для стыков железобетонных конструкций обоснована и экспериментально подтверждена возможность интенсификации гидросульфоалюмината кальция трехсульфатной формы (ГСАК-3) при твердении портландцемента в среде с пониженным влагосодержанием путем его комплексного модифицирования добавками высокоглиноземистого шлака (ВГШ), гипса, сульфата натрия и суперпластификатора С-3.

2. Установлено, что для интенсификации образования эттрингита, как основного фактора расширения цементного камня (ЦК) (с помощью высокоглиноземистого шлака и гипса), компенсирующего его усадку, необходимо снизить концентрацию Са(ОН)2 на 20.25 % при твердении цемента и увеличить общую щелочность в нем на 20.30 % путем введения сульфата натрия и суперпластификатора С-3.

3. Экспериментально установлено, что процессы расширения модифицированного портландцемента в условиях низкого водосодержания обеспечивается снижением общей пористости ЦК на 20.23 %, сохранением части свободной воды в цементном тесте (9. 11 %), набором необходимой прочности каркаса кристаллогидратов ЦК (8.13 МПа) через 11. 14 часов твердения, достигаемой введением Na2S04 и С-3.

4. Разработан состав комплексного полифункционального модификатора (КРМ), обладающего расширяющим, ускоряющим и пластифицирующим действием и состоящим из ВГШ (70 %), гипса (18 %), сульфата натрия (6 %), суперпластификатора С-3 (6 %). При совмещении бездобавочного портландцемента с 14,5 % КРМ и песком получен раствор (Ц:П=1:1, В/Ц=0,4) для замоноличивания стыков железобетонных конструкций, твердеющий без усадки в среде с пониженным влагосодержанием (патент РФ №2259964).

5. Установлено, что при твердении нового монтажного раствора в «колодце» бетонной конструкции, то есть при десорбции («отсосе») влаги из него деформации расширения на 60 сутки при 20 °С составляют 0,06 мм/м, что определяет его как безусадочный состав. При влажности окружающей среды 70-80 % расширение составляет 0,7 мм/м.

6. Монтажный раствор имеет повышенные технологические и эксплуатационно-технические показатели: подвижность Пк3 (по ГОСТ 5802), сохраняемость подвижности - 30 мин, высокие темпы набора прочности: через 1 сутки прочность при сжатии асж=20.22 МПа, прочность при раскалывании арас=2,9.3,1 МПа, при изгибе аизг=3,8.4 МПа, через 28 суток Сеж = 40.45 МПа, арас=4.5 МПа, аизг=7.8 МПа. Защитные свойства раствора, как показали 3-летние испытания стальной арматуры в условиях попеременного увлажнения-высушивания, высокие.

7. Испытания образцов, моделирующих в реальных размерах «колодцевый» стык железобетонных колонн, показали, что монтажный раствор обладает высоким сцеплением с бетоном «колодца», большей несущей способностью и жесткостью, чем растворы на портландцементе и напрягающем цементе, обеспечивая равнопрочность и монолитность стыка.

8. Разработана технологическая схема и технологический регламент для производства сухой монтажной смеси для безусадочного раствора и технические условия на неё. Успешно проведены натурные испытания колонн, стыки которых замоноличивали новым монтажным раствором, и фрагмента сборно-монолитного каркаса здания. Выпущено 2,5 т сухой монтажной смеси, на основе которой произведено замоноличивание 158 стыков колонн строящегося жилого дома в г.Казани.

Список литературы диссертационного исследования

1. Михайлов К.В., Волков Ю.С. Сборный железобетон: история и перспективы. Строительные материалы. 2006. - № 1. - С. 7-9.

2. Баринова Л.С., Куприянов Л.И., Миронов В.В. Современное состояние и перспективы развития строительного комплекса России // Строительные материалы.- 2004,- № 9.- С. 2-7.

3. Баринова Л.С., Песцов В.И. Сборный и монолитный железобетон в российском строительстве. В кн.: Бетон на рубеже третьего тысячелетия: Материалы 1-й Всерос. конф. по проблемам бетона и железобетона, 9-14 сент. 2001, с.44-54.

4. Федеральная целевая программа «Жилище» на 2002-2010 годы (утв. постановлением Правительства РФ от 17 сентября 2001 г. N 675) // http://bin-n.narod.ru/other/federalnay.htm.

5. Григораш В.А. Итоги работы строительного комплекса и жилищно-коммунального хозяйства в 2004 году // Строительные материалы.- 2005.- № 4.- С. 4-5.

6. Направления развития производства и применения железобетона в России // Строительные материалы, 1999.- № 1.- С. 20-21.

7. Даумова Р.И. Стыки элементов железобетонных каркасов многоэтажных каркасов зданий с применением эпоксидных полимеррастворов. Дисс. на соис. уч. ст. к-та техн. наук. М., 1984. - 237 с.

8. Драбкин Г.М., Марголин А.Г. Многоэтажные промышленные здания из сборного железобетона. Л.: Стройиздат, 1974. - 232 с.

9. Байков В.Н., Сигалов Э.Е. Железобетонные конструкции. Общий курс. 5-е изд., перераб. и доп. - М.: Стройиздат, 1991. - 767 с.

10. Мандриков А.П. Примеры расчета железобетонных конструкций: Учебное пособие для техникумов. 2-е изд., переб. И доп. - М.:Стройиздат, 1989.-506 с.

11. Дыховичный Ю.А., Максименко В.А. Сборный железобетонный унифицированный каркас. М.: Стройиздат, 1985. - 296 с.

12. Ковнеристов Г.Б., Русинов И.А, Малышев А.Н., Коваль Ю.В. Прочность и контактная деформативность железобетонных конструкций. -Киев, Будивэльник, 1991. 152 с.

13. Прочность и жесткость стыковых соединений панельных конструкций. Опыт СССР и ЧССР. Под ред. Лишака В.И. М.: Стройиздат, 1980.- 192 с.

14. Сорокин A.M. Бессварные стыки колонн многоэтажных зданий.// Бетон и железобетон.- 1984.- № 1.- С. 17-18.

15. Бондарев В.А. Исследование бессварочных шпоночных стыков тонкостенных сборных железобетонных конструкций. Автореферат дисс. на соис. уч. ст. к-та техн. наук. Киев., 1970. - 16 с.

16. Логунова В.А., Соколов И.Б. Бессварные стыки арматуры для железобетонных конструкций промышленных и гражданских сооружений города // Научно-технические ведомости СПбГТУ, 1997. № 1-2 (7-8). - С. 96-101.

17. Руководство по замоноличиванию цементно-песчаным раствором стыков шпоночного типа в сборных железобетонных ёмкостных сооружениях / ЦНИИПпромзданий. М.: Стройиздат, 1980. - 12 с.

19. Шаров И.И. Замоноличивание и герметизация стыков сборных железобетонных конструкций. М.: Стройиздат, 1980. - 232 с.

20. Лагойда А.В., Рубанов А.В. Комплексная противоморозная добавка на основе поташа // Бетон и железобетон. 1988. - № 2. - С. 21-23.

21. Матков Н.Г. Бетоны с суперпластификатором С-3 для сборных элементов и узлов каркасов зданий.// Бетон и железобетон.- 1989,- № 4.-С.24-27.

22. Уотсон С.К. Заделка швов под давлением в гражданском и промышленном строительстве (фирма «Уотсон Боуман»). М., ВНИИЭМ, 1971.-36 с.

23. Юкневичюте Я.А., Багочюнас В.М. О прочности старого и нового бетона с суперпластификатором С-3 // Бетон и железобетон. 1988. - № 10. -с. 33.

24. Москвин В.М., Гаркави М.С., Долгова О.А., Сафронов М.Ф. Бетоны с комплексными добавками для ремонтно-восстановительных работ // Бетон и железобетон. 1988.- № 11.- С. 9-10.

25. Михайлов Н.В., Урьев Н.Б. Коллоидный цементный клей и его применение для склеивания и омоноличивания бетонных и железобетонных конструкций и сооружений. Экспресс-информация. Кишинев: УДСМ МССР, 1961.-28 с.

26. Бовин Г.П., Павлова Т.К. Водонепроницаемые безусадочные составы для замоноличивания вертикальных шпоночных стыков сборных железобетонных резервуаров. М.: Стройиздат, 1972.- 24 с.

27. Мчедлов-Петросян О.П., Филатов Л.Г. Расширяющиеся составы на основе портландцемента. М.: Стройиздат, 1965. - 139 с.

28. Мчедлов-Петросян О.П. Химия неорганических строительных материалов.-М.: Стройиздат, 1971.

29. Рамачандран B.C. и др. Добавки в бетон. Справочное пособие. М.: Стройиздат, 1988.-572 с.

30. Шейкин А.Е., Якуб Т.Ю. Безусадочный портландцемент. М.: Стройиздат, 1966.- 103 с.

31. Шейнин А.Е. Структура, прочность и трещиностойкость цементного камня. М.: Стройиздат, 1974. 191 с.

32. Цилосани З.Н. Усадка и ползучесть бетона. Тбилиси: Изд-во АН Груз. ССР, 1963.- 173 с.

33. Александровский С.В. Некоторые особенности усадки бетона // Бетон и железобетон. 1959. - №10. - С.8-10.

34. Александровский С.В. Экспериментально-теоретические исследования усадочных напряжений в бетоне. М.: Стройиздат, 1965. -285 с.

35. Миненко Е.Ю. Усадка и усадочная трещиностойкость высокопрочных бетонов с органоминеральными модификаторами. Автореф. дисс. на соис. уч. ст. к.т.н. Пенза, 2004. - 19 с.

36. Кузнецов B.C. Расчет и конструирование стыков и узлов элементов железобетонных конструкций. М.: Издательство Ассоциации Строительных Вузов, 2002.- 128 с.

37. Сендеров Б.В., Фрайнт М.Я. Работа конструкций и стыков крупнопанельных домов в процессе их возведения и в период эксплуатации // Бетон и железобетон.-1971.- № П.- С. 12-14.

38. Гроздов В.Т. Дефекты стыков стеновых панелей и влияние их на несущую способность крупнопанельных зданий // Известия вузов. Строительство. 1993. - № 1. - С. 71-72.

39. Александрян Э.П. Прочность и деформативность стыков сборных железобетонных конструкций, замоноличенных полимеррастворами. -Тбилиси: Мецниереба, 1976. 118 с.

40. Стыки сборных железобетонных конструкций. Под ред. Васильева А.П. М.: Стройиздат, 1970. - 192 с.

41. Черкинский Ю.С. Полимерцементный бетон. М., Стройиздат, 1984. -212с.

42. Микульский В.Г., Игонин JI.A., Сцепление и склеивание бетона в сооружениях. М.: Стройиздат, 1965. - 128 с.

43. Микульский В.Г. Склеивание бетона. М.: Стройиздат, 1975. - 236 с.

44. Долев А.А. Эффективные клеевые композиции для омоноличивания стеновых блоков. Дисс. на соис. уч. ст. к-та техн. наук. М.: МГСУ, 2003. -162 с.

45. Матков Н.Г., Горшкова В.М. Сопряжение сборных железобетонных элементов с применением полимерных растворов. В Кн: Стыки сборных железобетонных конструкций. Под общ. ред. Васильева А.П. М.: Стройиздат, 1970. - 192 с.

46. Матков Н.Г., Напрасников И.В. Экспериментально-теоретические исследования и расчетная модель сцепления трубчато-клеевых стыков высокопрочной арматуры // Совершенствование стыков железобетонных конструкций. М, НИИЖБ, 1987.- С. 57-70.

47. Соколов Г.М. Клеи и зимнее склеивание бетона.// Известия вузов. Строительство. 2003. - №2. - С. 68-72.

48. Берген Р.И. Прочность клеевых соединений бетона на срез.// Бетон и железобетон.- 1973.- № 11. С. 23-24.

49. Мельников Ю.Л., Захаров JI.B. Стыки элементов сборных железобетонных мостовых конструкций. М., Транспорт, 1971.

50. Горшкова В.М. Сопряжение железобетонных колонн на эпоксидном полимеррастворе // Промышленное строительство. 1974. - № 1.

51. Савин П.Н., Царев В.М., Баранов В.М. Прогрессивная технология монтажа анкерных болтов под технологическое оборудование на эпоксидном клее // Известия вузов. Строительство. 1994. - № 7-8. - С. 122-124.

52. Соколов Г.М. Исследование технологических и конструкционных свойств эпоксидных клеев горячего отверждения для соединения бетонных ижелезобетонных конструкций. Автореф. дисс. на соис. уч. ст. к.т.н. Казань, 1971.-18 с.

53. Соколов Г.М. Эпоксидные пленочные клеи для бетона с улучшенными технологическими свойствами // Известия вузов. Строительство. 2003. - №3. - С. 53-57.

54. Лисенко В.А. Защитно-конструкционные полимеррастворы в строительстве. Киев: Будивельник, 1983.

55. Белов Б.П. Исследование прочности и деформативности клеештыревых стыков конструкций железобетонных мостов. Автореф. дисс. на соис. уч. ст. к.т.н. М., 1982.

56. Химическая технология вяжущих материалов: Учебное пособие. Под ред. Тимашева В.В. М.: Высшая Школа, 1980. - 472 с.

57. Тейлор X. Химия цемента. Пер. с англ. М.: Мир, 1996. - 500 с.

58. Кузнецова Т.В. Специальные цементы. В Кн.: Бетон на рубеже третьего тысячелетия: Материалы 1-й Всерос. конф. по проблемам бетона и железобетона, 9-14 сент. 2001, с. 1220-1224.

59. Филатов Л.В., Царенко А.В. Геоцементные композиции с применением вторичного сырья // Строительная газета. 2002. -№33.

60. Филатов Л.В., Царенко А.В. Геоцементные композиции на основе вторичного сырья. В Кн.: Бетон на рубеже третьего тысячелетия: Материалы 1-й Всерос. конф. по проблемам бетона и железобетона, 9-14 сент. 2001, с.44-54.

61. Кравченко И.В. Расширяющиеся цементы. М.: Стройиздат, 1962.164 с.

62. Волженский А.В. Минеральные вяжущие вещества. 4-е изд., перераб. и доп. - М.: Стройиздат, 1986. - 464 с.

63. Кузнецова Т.В., Талабер Й. Глиноземистый цемент. М.: Стройиздат, 1988.- 272 с.

64. Ефремова И.А. Бетоны с комбинированным заполнителем на основе портландцемента с расширяющимися добавками. Автореф. дисс. на соис. уч. ст. к.т.н. Ростов-на-Дону, 1997. - 24 с.

65. Кутателадзе К.С., Габададзе Т.Г., Нергадзе Н.Г. Алунитовые безусадочные, расширяющиеся и напрягающие цементы. Шестой международный конгресс по химии цемента. Том III Цементы и их свойства. Под общ. ред. Болдырева А.С. М.: Стройиздат, 1976.- 355 с.

66. Клигер П., Грининг Н. Эффективность расширяющегося* цемента. Пятый международный конгресс по химии цемента. Под общ. ред. Мчедлова-Петросяна О.П. М.: Стройиздат, 1973.- 480 с.

67. British Patent No 474917. «Expansiv Cements» (Assigned to Etablissements Poliet et Chausson). Nov. 10 (1937), 4 p.

68. Михайлов B.B. Патент № 68445 «Способ изготовления цемента (расширяющегося)», авг. 1942, Бюл. изобр. №5,1947.

69. Звездов А.И., Будагянц Л.И. Еще раз о природе расширения бетонов на основе напрягающего цемента // Бетон и железобетон.- 2001.- № 4.- С. 3-5.

70. Звездов А.И., Мартиросов Г.М. Бетоны с компенсированной усадкой. // Бетон и железобетон.- 1995.- № 4.- С. 3-5.

71. Звездов А.И., Титов М.Ю. Бетон с компенсированной усадкой для возведения трещиностойких конструкций большой протяженности // Бетон и железобетон.- 2001.- № 4.- С. 17-20.

72. Титова JI.A., Бейлина М.И. Расширяющие добавки для бетонов нового поколения// Бетон и железобетон. 2001. - № 4. - С. 24-27.

73. Фаликман В.Р., Сорокин Ю.В., Вайнер А.Я., Башлыков Н.Ф. Гидроксилсодержащие органические расширяющие добавки для снижения деформаций усадки бетона // Строительные материалы. 2005. - № 8. - с. 911.

74. Кардумян Г.С., Каприелов С.С. Новый органоминеральный модификатор серии «МБ» Эмбелит для производства высококачественных бетонов // Строительные материалы. - №8.-2005.-С.12-15.

75. Каприелов С.С., Шейнфельд А.В., Кардумян Г.С., Дондуков В.Г. Модифицированные высокопрочные мелкозернистые бетоны с улучшенными деформационными характеристиками // Бетон и железобетон.-2006.- № 2,- С. 2-7.

76. Кристаллографическая и кристаллохимическая база данных для минералов и их структурных аналогов WWW-Минкрист // http://database.iem.ac.ru/mincryst/rus/sfull.php

77. Будников П.П. Кравченко И.В. Расширяющиеся цементы Основной доклад. Пятый международный конгресс по химии цемента. Под ред. Мчедлова-Петросяна. М.: Стройиздат, 1973.- 480 с.

78. Волженский А.В. Теоретическая водопотребность вяжущих, величина частиц новообразований и их влияние на деформации твердеющих систем // Бетон и железобетон.- 1969.- № 9.- С. 35-36.

79. Волженский А.В. Характер и роль изменений в объемах фаз при твердении вяжущих и бетонов // Бетон и железобетон.- 1969.- № 3.- С. 16-20.

80. Ларионова З.М., Никитина Л.В., Гарашин В.Р. Фазовый состав, микроструктура и прочность цементного камня и бетона. М.: Стройиздат, 1977.- 264 с.

81. Ларионова З.М. Образование гидросульфоалюмината кальция и его влияние на основные свойства быстротвердеющего цемента. М.: НИИЖБ, 1959.-64 с.

82. Ларионова З.М. Устойчивость эттрингита в цементных системах. Шестой международный конгресс по химии цемента. Том II Гидратация и твердение цемента. Под общ. ред. Болдырева А.С. М.: Стройиздат, 1976.358 с.

83. Candlot С. Bulletin. Societe d"Encouragement pour l"lndustrie Nationale, v.5 (1890), p.682

84. Michaelis W. Tonindustrie-Zeitung (Goslar), v.16, 1892, p.105.

85. Lerch W., Ashton F.W., Bogue R.H. Sulfoaluminates of calcium, 1. Res. Natl. Bur. Standards, 2, (1929), pp. 715-731.

86. Сиверцев Г.Н. Лапшина А.И. Сравнительные исследования обычных и расширяющихся цементов. В Кн: Совершенствование методов исследования цементного камня и бетона. Под общ. ред. Сиверцева Г.Н. М.: Стройиздат, 1968.-214 с.

87. Сиверцев Г.Н. Лапшина А.И. Расширяемость цементов. В Кн: Совершенствование методов исследования цементного камня и бетона. Под общ. ред. Сиверцева Г.Н. М.: Стройиздат, 1968. - 214 с.

88. Сиверцев Г.Н., Ларионова З.М. НТО ЦНИПС, №5381, 1955.

89. Михайлов В.В., Литвер С.Л. Расширяющийся и напрягающий цементы и самонапряженные железобетонные конструкции. М.: Стройиздат, 1974.-312 с.

90. Lossier G. «Silikates Industrielles» №7-8,1960.

91. Lossier G. «La Geniec Civile», № 7-8, 1944.

92. Chassevent V., Stiglitz P. «Comptes rendus» №26, v.222, 1946.

93. Кравченко И.В. Глинозёмистый цемент. M., Стройиздат, 1961. -176 с.

94. Кравченко И.В., Кузнецова Т.В., Власова М.Т., Юдович Б.Э. Химия и технология специальных цементов. М.: Стройиздат, 1979. - 208 с.

95. ГОСТ 11052-74. Цемент гипсоглинозёмистый расширяющийся.

96. Рояк С.М., Рояк Г.С. Специальные цементы. М.: Стройиздат, 1993.-416 с.

97. Алексеев С.Н. Коррозия и защита арматуры в бетоне. М: Стройиздат, 1962.

98. Алексеев С.Н., Иванов Ф.М., Модры С., Шиссль П. Долговечность железобетона в агрессивных средах. М.: Стройиздат, 1990. - 320 с.

99. Исследование и применение напрягающего бетона и самонапряженных железобетонных конструкций. Сборник научных трудов. Под ред. Михайлова В.В. и Литвера С.Л. М.: Стройиздат, 1984. - 128 с.

100. Самонапряженные и непрерывно армированные конструкции. Под ред. Михайлова В.В., Звездова А.И. М.: НИИЖБ, 1989. - 109 с.

101. Кузнецова Т.В., Розман Д.А., Мингазутдинова Т.В., Лебедев А.О., Волкова Л.С., Комарова Г.И. Влияние дисперсности напрягающего цемента на его свойства. В сб. трудов: Химия и технология специальных цементов. -НИИЦемент, 1985,152 с.

102. Кузнецова Т.В. Самонапряжение расширяющихся цементов. Шестой международный конгресс по химии цемента. Том III Цементы и их свойства. Под общ. ред. Болдырева А.С. М.: Стройиздат, 1976.- 355 с.

103. Будагянц Л.И., Литвер С.Л., Дех О.С. Самонапряженные угловые стыки плитных элементов // Бетон и железобетон.- 1984.- № 12.- С. 25-27.

104. Дех О.С. Прочность и трещиностойкость самонапряженных стыков сборных и сборно-монолитных конструкций. Дисс. на соис. уч. ст. к-та техн. наук. М.: НИИЖБ, 1984. - 262 с.

105. А.с. 310982 СССР МКИ С 04 Ь USA Стыковое соединение железобетонных элементов / В.В. Михайлов, Бердичевский Г.И. (СССР)// Открытия, изобретения, промышленные образцы, торговые знаки. 1971. -№24.

106. Дех О.С., Будагянц Л.И., Чушкин А.П. Самонапряженное стыкование растянутых элементов ёмкостных сооружений // Бетон и железобетон.- 1988.-№4.-С. 10-11.

107. Вексман A.M., Литвер С.Л., Ризоватов В.В., Будагянц Л.И. Замоноличивание стыков сборных железобетонных резервуаров с применением напрягающего цемента // Бетон и железобетон.- 1967.- № 12.

108. Мартиросов Г.М. Будагянц Л.И., Титова Л.А. Бетоны на основе расширяющихся цементов // Адрес: http://proektstroy.ru/informwrites.php?tag=462&deep=2.

109. Батраков В.Г. Модифицированные бетоны. Теория и практика. 2-е изд., перераб. и доп. - М.: Стройиздат, 1998. - 768 с.

110. Свешников Г.В., Лузин Ю.Н. и др. Замоноличивание висячей оболочки покрытия закрытой стоянки автобусного парка // Бетон и железобетон.- 1974.- № 4.- С. 31-32.

111. Литвер С.Л., Будагянц Л.И. Напрягающий цемент для самонапряжения железобетона без тепловой обработки // Бетон и железобетон. 1968.- № 4.- С. 4-7.

112. Третьяков О.Е. Влияние комплексных добавок на свойства напрягающего бетона // Бетон и железобетон. 1988. - № 10. - С. 20-22.

113. Третьяков О.Е. Эффективность применения добавок поверхностно-активных веществ для регулирования свойств бетона на напрягающем цементе // Архитектура и строительство Узбекистана. 1982,- № 8.- С. 31-32.

114. Водонепроницаемый расширяющийся цемент и его применение в строительстве. Под общ. ред. Михайлова В.В. М.: Стройиздат, 1951. -164 с.

115. Лейрих В.Э. Расширяющийся цемент ГАШ. В сб. трудов: «Опыт строительства на Урале».- Свердловск, 1947.

116. Лейрих В.Э., Веприк И.Б., Прохоров В.Х. Способы получения безусадочного вяжущего на основе портландцемента и расширяющегося компонента. Английский патент №1, 083, 727.

117. Лейрих В.Э., Прохоров В.Х., Пивень Л.С. Безусадочный конструктивный керамзитобетон // Бетон и железобетон.- 1970.- № 9.- С. 1214.

118. Прохоров В.Х., Белова И.Ф., Лейрих В.Э. Бетон на основе расширяющегося портландцемента для замоноличивания стыков сборных сооружений // Бетон и железобетон 1970.- № 7.- С. 31-32.

119. Арбузова Т.Б. Добавка для омоноличивания стыков сборного железобетона// Бетон и железобетон.- 1988.- № 4.- С. 15-17.

120. А.с. 444746 СССР МКИ С 04 Ъ 7/54 Расширяющая добавка к цементу./ Т.Б. Арбузова, А.Н. Новопашин, Т.А. Лютикова, Э.В. Пименова (СССР)// Открытия, изобретения, промышленные образцы, торговые знаки. -1974. -№36.-С.54.

121. А.с. 835983 СССР МКИ С 04 Ь 7/14 Способ производства расширяющей добавки к цементу./ Т.Б. Арбузова, А.А. Новопашин, A.M. Дмитриев и др. (СССР)// Открытия, изобретения, промышленные образцы, торговые знаки. 1981. - №21. - С. 113.

122. Барсукова З.М. Аналитическая химия. М.: Высшая школа, 1990 -320 с.

123. Вернигорова В.Н., Макридин Н.И., Соколова Ю.А. Современные химические методы исследования строительных материалов: Учебное пособие. М.: АСВ, 2003 - 224 с.

124. ГОСТ 25094-82. Добавки активные минеральные. Методы испытаний.

125. Методы исследования цементного камня и бетона. Под ред. Ларионовой З.М. М.: Стройиздат, 1970. - 160 с.

126. Липсон Г., Стал Г. Интерпретация порошковых рентгенограмм. М.: Мир.- 1972.-384 с

127. Горшков B.C. Термография строительных материалов. М.: Стройиздат, 1968.-240 с.

128. Горшков B.C., Тимашев В.В., Савельев В.Г. Методы физико-химического анализа вяжущих веществ. М.: Высшая школа, 1981. - 335 с.

129. Ратинов В.Б., Иванов Ф.М. Химия в строительстве. 2-е изд., перераб. и доп. - М.: Стройиздат, 1977. - 220 с.

130. Ратинов В.Б., Розенберг Т.И. Добавки в бетон. М.: Стройиздат, 1973.-207 с.

131. Глекель Ф.Л. Физико-химические основы применения добавок к минеральным вяжущим. Ташкент: «ФАН» АН УзССР, 1975.

132. Курбатова И.И. Химия гидратации портландцемента. М.: Стройиздат, 1977.- 159 с.

133. Тараканов О.В. Структурообразование и твердение цементных бетонов с комплексными ускоряющими и противоморозными добавками на основе вторичного сырья. Дисс. на соис. уч. ст. д-ра техн. наук. Пенза.: ПТУ АС, 2003. - 570 с.

134. Ребиндер П.А. Физико-химическая механика. Москва: Знание, 1958.-64 с.

135. Топильский Г.В., Алданов Е.А., Фролова Л.Н. Клеевые минеральные композиции // Бетон и железобетон. 1996. - № 3. - С. 11-13.

136. Демьянова B.C., Калашников В.И., Миненко Е.Ю., Тростянский В.М., Стасевич А.В. Усадка и усадочная трещиностойкость высокопрочных бетонов. Пенза: ЦНТИ, 2004. - 112 с.

137. Теряев В.Г. Разработка и экспериментальные исследования бессварных соединений сборных внецентренно сжатых железобетонных конструкций / Автореферат дисс. на соис. уч. ст. к-та техн. наук. М., 1971. -16 с.

138. Технология напрягающего и самонапряженных железобетонных конструкций. Под ред. В.В. Михалова и C.JI. Литвера- М., Стройиздат,1975.-183 с.

139. Чмель Г.В. Модифицирование расширяющихся вяжущих веществ с целью управления собственными деформациями и прочностью бетонов. Автореферат дисс. на соис. уч. ст. к-та техн. наук. Ростов-на-Дону, 2004. -24 с.

140. Кузнецова Т.В., Розман Д.А., Мингазутдинова Т.В., Лебедев А.О., Волкова Л.С., Иващенко С.И., Астанский Л.Л. Невзрывчатое разрушающее вещество. В сб. трудов: Химия и технология специальных цементов. -НИИЦемент, 1985, 152 с.

141. Ивянский Г.Б., Белевич В.Б., Зонтов А.Ю. Заделка стыков сборных железобетонных конструкций.-М.: Стройиздат, 1966.

142. Ивянский Г.Б., Белевич В.Б. Механизированная заделка стыков сборных железобетонных конструкций. М.: Стройиздат, 1971.

143. Баженов Ю.М. Высокопрочный мелкозернистый бетон для армоцементных конструкций. -М.: Стройиздат, 1969. 128 с.

144. Баженов Ю.М. Технология бетона. М.: Изд-во АСВ, 2002.- 500 с.

145. Баженов Ю.М. Магдеев У.Х., Алимов Л.А., Воронин В.В., Гольденберг Л.Б. Мелкозернистые бетоны: Учебное пособие. М.: МГСУ, 1998.- 148 с.

146. Бут Ю.М., Сычев М.М., Тимашев В.В. Химическая технология вяжущих материалов: Учебник для вузов. М.: Высшая школа, 1980.- 472 с.

147. Тимашев В.В. Избранные труды. Синтез и гидратация вяжущих материалов. М.: Наука, 1986. - 424 с.

148. Гаркави М.С. Термодинамический анализ структурных превращений в вяжущих системах. Магнитогорск: МГТУ, 2005. - 243 с.

149. Козлова В.К., Ильевский Ю.А., Карпова Ю.В. Продукты гидратации кальциево-силикатных фаз цемента и смешанных вяжущих веществ. Барнаул: АлтГТУ, 2005. - 183 с.

150. Бирюков А.И. Твердение силикатных минералов цемента. -Харьков, ХФИ «Транспорт Украины», 1999. 288 с.

151. Пащенко А.А., Сербии В.П., Старчевская Е.А. Вяжущие материалы. Киев: Вища школа, 1985. - 440 с.

152. Холмянский М.М. Бетон и железобетон: Деформативность и прочность. М: Стройиздат, 1997. - 576 с.1. Сухая монтажная смесь

В производстве безусадочного цемента используется портландцементный клинкер с цементными глиноземистыми добавками, молотой негашеной извести и ГКЖ-94. При этом известь добавляют в воду затворения, а добавку ГКЖ-94 вводят в цемент при его помоле. Целесообразно применение безусадочного цемента для гидроизоляции стыков крупногабаритных конструкций. Гидроизолирующий водонепроницаемый безусадочный цемент ВБЦ получают путем помола смеси глиноземистого цемента, полуводного гипса и извести «пушонка». Сырьевая смесь содержит не менее 85% глиноземистого цемента. Соотношение между известью и гипсом может изменяться в пределах от 2,0 до 1,0. Начало схватывания гидроцемента ВБЦ наступает через 1 минуту, а конец схватывания через 10 минут. При давлении 3 бар цементный раствор или гидробетон становится гидроизолирующим через час после начала затворения, а при давлении 6 бар -через сутки.

Гидроизолирующие смеси на основе гидроцемента

Безусадочный цемент НЦ-10 предназначен для сооружения гидроизолирующих оболочек бетонных и железобетонных подземных сооружений, находящихся в постоянном контакте с водой. Ряд цементных добавок в портландцемент позволяют получать цементную смесь, пригодную для приготовления гидроизолирующих смесей, пескобетонов, растворов и гидробетонов со свойствами расширения. Применяются следующие добавки: СДБ - 0,15%, хлористый кальций - 2,0%, алюминиевая пудра - 0,01%, сульфат алюминия - 2,0%. Такие смеси могут применяться в панельном домостроении для герметичной заделки внешних швов. Антикоррозионные цементные смеси с расширяющимися свойствами на основе портландцемента содержат азотнокислый кальций и сернокислый глинозем. Цементные добавки ферросилиция, соды, алюминиевого порошка и поташа в гидроизолирующую смесь придают антикоррозионные свойства образующемуся гидробетону, что позволяет эффективно применять гидросмесь в железобетонных конструкциях, содержащих закладные детали.

Гидроизоляция бассейнов с использованием смесей на основе безусадочных цементов

Для выравнивания дна бассейна из гидробетона делают стяжку на основе смеси из безусадочного цемента и песка с размером гранул от 1 до 8 мм. Перед укладкой гидроизолирующего раствора на бетонное основание наносят контактный слой, обеспечивающий сцепление стяжки. Отдельные отверстия, углубления в бетоне и другие дефекты гидробетона заделывают быстротвердеющим гидроизолирующим материалом, называемым гидропломба.

После полного высыхания гидроизолирующего раствора или штукатурки на безусадочном цементе переходят к следующим этапам гидроизоляции бассейна, которые выполняют изнутри, а если чаша бассейна углублена, то также и снаружи.

Гидроизоляционные материалы и смеси на основе безусадочного цемента широко используются для гидроизоляции бассейнов, создавая плотный слой гидробетона. Гидросмеси заполняет каверны, трещины и мелкие дефекты в бетоне. Перед использованием гидроизолирующих смесей тщательно очищают поверхность бетона, обеспечивая чистую, ровную и сухую поверхность с влажностью не более 3%. Гидросмесью на базе безусадочного цемента изолируют закладные детали, стыки и смежные углы в бассейне. Для дополнительной гидроизоляции горизонтальных и вертикальных углов применяют гидроизоляционную ленту, обеспечивающую герметичность изоляции.

Гидроизолирующий раствор на базе безусадочного цемента наносят на влажную поверхность в несколько слоев, так что суммарная толщина гидроизолирующих слоев составляет не менее 2 мм, после чего выдерживают около 5 дней до достижения гидробетоном максимальных гидроизолирующих качеств.

Марку безусадочного цемента для гидроизоляции бассейна выбирают в зависимости от конструкции бассейна, условий его эксплуатации, состава грунта под бассейном. Через несколько дней после выполнения дополнительной гидроизоляции с помощью растворов на безусадочных цементах проводят гидроиспытания бассейна, который заполняют водой и наблюдают в течение четырнадцати дней. Если уровень воды в бассейне меняется, выявляют места утечек и соответствующие им дефекты бетона, которые после завершения гидроиспытаний заделывают гидроизолирующими составами и смесями, после чего проводят повторные гидроиспытания.

Где купить безусадочный цемент со склада по заводской цене

Наша компания осуществляет оптовые поставки безусадочного цемента в мешках и навалом с завода и со склада в Москве. У нас Вы можете купить высококачественный безусадочный гидроцемент разных марок оптом по заводской цене на выгодных условиях с доставкой на ваши объекты. Мы осуществляем оптовую продажу безусадочного цемента и смесей НЦ 10, НЦ 20 РУСЕАН, ЛУРС, РПЦ, ГГРЦ . Вы можете купить у нас безусадочный гидроцемент для строительства крупногабаритных железобетонных конструкций и гидротехнических сооружений.



Новое на сайте

>

Самое популярное