Домой Интерьер квартиры Прибор на физику своими руками заготовки купить. Простые опыты

Прибор на физику своими руками заготовки купить. Простые опыты

Слайд 1

Тема: Приборы по физике своими руками и простые опыты с ними.

Работу выполнил: ученик 9 класса- Давыдов Рома Руководитель: учитель физики- Ховрич Любовь Владимировна

Новоуспенка – 2008

Слайд 2

Сделать прибор, установку по физике для демонстрации физических явлений своими руками. Объяснить принцип действия данного прибора. Продемонстрировать работу данного прибора.

Слайд 3

ГИПОТЕЗА:

Сделанный прибор, установка по физике для демонстрации физических явлений своими руками применить на уроке. При отсутствии данного прибора в физической лаборатории, данный прибор сможет заменить недостающую установку при демонстрации и объяснении темы.

Слайд 4

Сделать приборы вызывающие большой интерес у учащихся. Сделать приборы отсутствующие в лаборатории. сделать приборы вызывающие затруднение в понимании теоретического материала по физике.

Слайд 5

Вынужденные колебания.

При равномерном вращении ручки мы видим, что на груз через пружину будет передаваться действие периодически измененной силы. Изменяясь с частотой, равной частоте вращения ручки, эта сила заставит груз совершать вынужденные колебания Резонанс-это явление резкого возрастание амплитуды вынужденных колебаний.

Слайд 6

Вынужденные колебания

Слайд 7

ОПЫТ 2: Реактивное движение

На штативе в кольце установим воронку, к ней прикрепим трубку с наконечником. В воронку нальем воду, и когда вода начнет вытекать с конца, то трубка отклонится в противоположную сторону. Это и есть реактивное движение. Реактивное движение- это движение тела, возникающее при отделении от него с какой либо скоростью некоторой его части.

Слайд 8

Реактивное движение

Слайд 9

ОПЫТ 3:Звуковые волны.

Зажмем в тисках металлическую линейку. Но стоит заметить, что если тисками будет выступать большая часть линейки, то, вызвав ее колебания, мы не услышим порождаемые ею волны. Но если укоротить выступающую часть линейки и тем самым увеличить частоту ее колебаний, то мы услышим порожденные Упругие волны, распространяясь в воздухе, а так же внутри жидких и твердых телах, не видимы. Однако при определенных условиях их можно услышать.

Слайд 10

Звуковые волны.

Слайд 11

Опыт 4: Монета в бутылке

Монета в бутылке. Хотите увидеть закон инерции в действии? Приготовьте пол-литровую бутылку из-под молока, кольцо из картона шириной 25 мм и 0 100 мм и двухкопеечную монету. Поставьте кольцо на горлышко бутылки, а сверху точно напротив отверстия горлышка бутылки положите монету (рис. 8). Просунув в кольцо линейку, ударьте ею по кольцу. Если вы это сделаете резко, кольцо отлетит, а монета упадет в бутылку. Кольцо переместилось настолько быстро, что его движение не успело передаться монете и та по закону инерции осталась на месте. А потеряв опору, монета упала вниз. Если кольцо отвести в сторону медленнее, монета «почувствует» это движение. Траектория ее падения изменится, и в горлышко бутылки она не попадет.

Слайд 12

Монета в бутылке

Слайд 13

Опыт 5: Парящий шарик

Когда вы дуете, струя воздуха поднимает шарик над трубкой. Но давление воздуха внутри струи меньше, чем давление окружающего струю «спокойного» воздуха. Поэтому шарик находится в своеобразной воздушной воронке, стенки которой образует окружающий воздух. Плавно снижая скорость струи из верхнего отверстия, нетрудно «посадить» шарик на прежнее место Для этого опыта понадобится Г-образная трубка, например стеклянная, и легкий шарик из пенопласта. Закройте верхнее отверстие трубки шариком (рис. 9) и подуйте в боковое отверстие. Вопреки ожиданию шарик не отлетит от трубки, а начнет парить над ней. Почему так происходит?

Слайд 14

Парящий шарик

Слайд 15

Опыт 6: Движение тела по "мертвой петле

" С помощью прибора "мертвая петля" можно демонстрировать ряд опытов по динамике материальной точки по окружности. Демонстрация проводится в следующем порядке:1. Шарик скатывают по рельсам с наивысшей точки наклонных рельсов, где он удерживается электромагнитом, который питается от 24в. Шарик устойчиво описывает петлю и с некоторой скоростью вылетает с другого конца прибора2. Шарик скатывают с наименьшей высоты, когда шарик только описывает петлю, не срываясь с верхней точки ее3. Еще с меньшей высоты, когда шарик, не доходя до вершины петли, отрывается от нее и падает, описав в воздухе внутри петли параболу.

Слайд 16

Движение тела по "мертвой петле

Слайд 17

Опыт 7: Воздух горячий и воздух холодный

На горлышко обыкновенной пол-литровой бутылки натяните воздушный шарик (рис. 10). Поставьте бутылку в кастрюлю с горячей водой. Воздух, находящийся внутри бутылки, начнет нагреваться. Молекулы газов, входящих в его состав, станут двигаться все быстрее и быстрее по мере повышения температуры. Они сильнее будут бомбардировать стенки бутылки и шарика. Давление воздуха внутри бутылки начнет повышаться, а шарик-раздуваться. Через некоторое время переставьте бутылку в кастрюлю с холодной водой. Воздух в бутылке начнет остывать, движение молекул замедлится, давление понизится. Шарик сморщится, будто из него выкачали воздух. Вот так можно убедиться в зависимости давления воздуха от окружающей температуры

Слайд 18

Воздух горячий и воздух холодный

Слайд 19

Опыт 8: Растяжение твердого тела

Взяв паралоновый брусок за концы, растягиваем его. Хорошо видно увеличение расстояний между молекулами. Можно имитировать также возникновение в этом случае меж молекулярных сил притяжения.

а- Давыдов Рома Руководитель: учитель физики- Ховрич Любовь Владимировна Новоуспенка – 2008


Цель: Сделать прибор, установку по физике для демонстрации физических явлений своими руками. Объяснить принцип действия данного прибора. Продемонстрировать работу данного прибора.


ГИПОТЕЗА: Сделанный прибор, установка по физике для демонстрации физических явлений своими руками применить на уроке. При отсутствии данного прибора в физической лаборатории, данный прибор сможет заменить недостающую установку при демонстрации и объяснении темы.


Задачи: Сделать приборы вызывающие большой интерес у учащихся. Сделать приборы отсутствующие в лаборатории. сделать приборы вызывающие затруднение в понимании теоретического материала по физике.


ОПЫТ 1: Вынужденные колебания. При равномерном вращении ручки мы видим, что на груз через пружину будет передаваться действие периодически измененной силы. Изменяясь с частотой, равной частоте вращения ручки, эта сила заставит груз совершать вынужденные колебания Резонанс-это явление резкого возрастание амплитуды вынужденных колебаний.


Вынужденные колебания


ОПЫТ 2: Реактивное движение. На штативе в кольце установим воронку, к ней прикрепим трубку с наконечником. В воронку нальем воду, и когда вода начнет вытекать с конца, то трубка отклонится в противоположную сторону. Это и есть реактивное движение. Реактивное движение- это движение тела, возникающее при отделении от него с какой либо скоростью некоторой его части.


Реактивное движение


ОПЫТ 3:Звуковые волны. Зажмем в тисках металлическую линейку. Но стоит заметить, что если тисками будет выступать большая часть линейки, то, вызвав ее колебания, мы не услышим порождаемые ею волны. Но если укоротить выступающую часть линейки и тем самым увеличить частоту ее колебаний, то мы услышим порожденные Упругие волны, распространяясь в воздухе, а так же внутри жидких и твердых телах, не видимы. Однако при определенных условиях их можно услышать.


Звуковые волны.


Опыт 4: Монета в бутылке Монета в бутылке. Хотите увидеть закон инерции в действии? Приготовьте пол-литровую бутылку из-под молока, кольцо из картона шириной 25 мм и 0 100 мм и двухкопеечную монету. Поставьте кольцо на горлышко бутылки, а сверху точно напротив отверстия горлышка бутылки положите монету (рис. 8). Просунув в кольцо линейку, ударьте ею по кольцу. Если вы это сделаете резко, кольцо отлетит, а монета упадет в бутылку. Кольцо переместилось настолько быстро, что его движение не успело передаться монете и та по закону инерции осталась на месте. А потеряв опору, монета упала вниз. Если кольцо отвести в сторону медленнее, монета «почувствует» это движение. Траектория ее падения изменится, и в горлышко бутылки она не попадет.


Монета в бутылке


Опыт 5: Парящий шарик Когда вы дуете, струя воздуха поднимает шарик над трубкой. Но давление воздуха внутри струи меньше, чем давление окружающего струю «спокойного» воздуха. Поэтому шарик находится в своеобразной воздушной воронке, стенки которой образует окружающий воздух. Плавно снижая скорость струи из верхнего отверстия, нетрудно «посадить» шарик на прежнее место Для этого опыта понадобится Г-образная трубка, например стеклянная, и легкий шарик из пенопласта. Закройте верхнее отверстие трубки шариком (рис. 9) и подуйте в боковое отверстие. Вопреки ожиданию шарик не отлетит от трубки, а начнет парить над ней. Почему так происходит?


Парящий шарик


Опыт 6: Движение тела по "мертвой петле " С помощью прибора "мертвая петля" можно демонстрировать ряд опытов по динамике материальной точки по окружности. Демонстрация проводится в следующем порядке:1. Шарик скатывают по рельсам с наивысшей точки наклонных рельсов, где он удерживается электромагнитом, который питается от 24в. Шарик устойчиво описывает петлю и с некоторой скоростью вылетает с другого конца прибора2. Шарик скатывают с наименьшей высоты, когда шарик только описывает петлю, не срываясь с верхней точки ее3. Еще с меньшей высоты, когда шарик, не доходя до вершины петли, отрывается от нее и падает, описав в воздухе внутри петли параболу.


Движение тела по "мертвой петле


Опыт 7: Воздух горячий и воздух холодный На горлышко обыкновенной пол-литровой бутылки натяните воздушный шарик (рис. 10). Поставьте бутылку в кастрюлю с горячей водой. Воздух, находящийся внутри бутылки, начнет нагреваться. Молекулы газов, входящих в его состав, станут двигаться все быстрее и быстрее по мере повышения температуры. Они сильнее будут бомбардировать стенки бутылки и шарика. Давление воздуха внутри бутылки начнет повышаться, а шарик-раздуваться. Через некоторое время переставьте бутылку в кастрюлю с холодной водой. Воздух в бутылке начнет остывать, движение молекул замедлится, давление понизится. Шарик сморщится, будто из него выкачали воздух. Вот так можно убедиться в зависимости давления воздуха от окружающей температуры


Воздух горячий и воздух холодный


Опыт 8: Растяжение твердого тела Взяв паралоновый брусок за концы, растягиваем его. Хорошо видно увеличение расстояний между молекулами. Можно имитировать также возникновение в этом случае меж молекулярных сил притяжения.


Растяжение твердого тела


Опыт 9: Сжатие твердого тела Сжимают поролоновый брусок вдоль его большой оси. Для этого его кладут на подставку, накрывают с верху линейкой и производят давление на нее рукой. Наблюдают уменьшение расстояния между молекулами и возникновение сил отталкивания между ними.


Сжатие твердого тела


Опыт 4: Конусдвойной, катящийся вверх. Этот опыт служит для демонстрации опыта, подтверждающего, что свободно перемещающийся предмет всегда располагается таким образом, чтобы центр тяжести занимал наинизшее из возможных для него положений. Перед демонстрацией планки расставляются на определенный угол. Для этого двойной конус помещают концами в вырезы, сделанные в верхней кромке планок. Затем переносят конус вниз, в начало планок и отпускают. Конус будет передвигаться вверх, пока своими концами не попадет в вырезы. Фактически центр тяжести конуса, лежащий на его оси, будет при этом смещаются вниз, что мы и видим.


Конусдвойной, катящийся вверх


Интерес учащихся на уроке с физическим опытом


Заключение: Наблюдать за опытом проводимым учителем, интересно. Проводить его самому интереснее вдвойне. А проводить опыт с прибором, сделанным и сконструированным своими руками, вызывает очень большой интерес у всего класса. В таких опытах легко установить взаимосвязь и сделать вывод как работает данная установка.

Катушка Тесла своими руками. Резонансный трансформатор Тесла — очень эффектное изобретение. Никола Тесла прекрасно понимал, насколько зрелищен прибор, и постоянно его демонстрировал на людях. Как думаете, зачем? Правильно: чтобы получить дополнительное финансирование.

Почувствовать себя великим ученым и поразить своих друзей вы можете, смастерив свою мини-катушку. Вам понадобятся: конденсатор, небольшая лампочка, провод и несколько других нехитрых деталей. Однако помните, что резонансный трансформатор Тесла производит высокое напряжение высокой частоты — ознакомьтесь с правилами технической безопасности, иначе эффект может превратиться в дефект.

Картофельная пушка. Пневматическое оружие, стреляющее картошкой? Легко! Это не особо опасный проект (разве что вы надумаете сделать гигантское и очень мощное картофельное оружие). Картофельная пушка — отличный способ весело провести время для тех, кто любит инженерное дело и мелкое хулиганство. Супер-оружие элементарно в изготовлении — вам понадобятся пустой аэрозольный распылитель и пара других запчастей, которые несложно найти.

Игрушечный автомат повышенной мощности. Помните детские игрушечные автоматы — яркие, с разными функциями, пиф-паф, ой-ой-ой? Единственное, чего не хватало многим мальчишкам, так это чтобы они стреляли немного дальше и немного сильнее. Что ж, это поправимо.

Игрушечные автоматы делают из резины, чтобы они были максимально безопасными. Конечно, производители убедились, что давление в таких пистолетах минимальное и не может причинить никому вреда. Но некоторые умельцы все же нашли способ, как добавить мощности детскому оружию: вам просто нужно избавиться от деталей, замедляющих процесс. От каких и как — рассказывает экспериментатор из видеоролика.

Дрон своими руками. Многие представляют себе дрон исключительно как большой беспилотный летательный аппарат, используемый в ходе военных действий на Ближнем Востоке. Это заблуждение: дроны становятся повседневным явлением, в большинстве случаев они малы, и сделать их в домашних условиях не так и сложно.

Запчасти для «домашнего» дрона легко приобрести, и не надо быть инженером, чтобы собрать его целиком — хотя, конечно, придется повозиться. Среднестатистический дрон, сделанный вручную, состоит из небольшой основной части, нескольких дополнительных частей (можно купить, а можно найти от других устройств) и электронного оборудования для дистанционного управления. Да, особое удовольствие — это оборудовать готовый дрон камерой.

Терменвокс — музыка магнитного поля. Этот загадочный электромузыкальный инструмент интересен не только (и не столько?) музыкантам, но сумасшедшим ученым. Необычный прибор, придуманный советским изобретателем в 1920 году, вы можете собрать дома. Представьте: вы просто двигаете руками (конечно, с томным видом ученого-музыканта), а инструмент издает «потусторонние» звуки!

Научиться виртуозно управлять терменвоксом — дело нелегкое, но результат того стоит. Сенсор, транзистор, динамик, резистор, источник питания, еще пара деталей, и можете приступать! Вот как это выглядит.

Если не уверенно чувствуете себя в английском, посмотрите русскоязычный ролик, как сделать терменвокс из трех радиоприемников.

Дистанционно управляемый робот. Ну кто не мечтал о роботе? Да еще и собственной сборки! Правда, полностью автономный робот потребует серьезных званий и усилий, а вот робота с дистанционным управлением вполне можно создать из подручных материалов. Например, робот на видео сделан из пенопласта, дерева, небольшого мотора и аккумулятора. Этот «питомец» под вашим руководством свободно перемещается по квартире, преодолевая даже неровные поверхности. Немного творчества, и вы сможете придать ему такой внешний вид, какой вам заблагорассудится.

Плазменный шар наверняка привлекал уже ваше внимание. Оказывается, не нужно тратить деньги на его приобретение, а можно набраться уверенности в себе и сделать самому. Да, в домашних условиях он будет небольшим, но все так же одно прикосновение к поверхности будет заставлять его разряжаться красивейшими разноцветными «молниями».

Основные ингредиенты: индукционная катушка, лампа накаливания и конденсатор. Обязательно соблюдайте технику безопасности — эффектный прибор работает под напряжением.

Радио на солнечной батарее — отличный прибор для любителей продолжительных походов. Не выбрасывайте старый радиоприемник: просто присоедините к нему солнечную батарею, и вы станете независимыми от батареек и других источников питания, кроме солнца.

Вот так выглядит радиоприемник с солнечной батареей.

Сегвей сегодня невероятно популярен, но считается дорогостоящей игрушкой. Вы можете изрядно сэкономить, потратив вместо тысячи долларов всего несколько сотен, прибавив к ним собственные силы и время, и смастерить сегвей самостоятельно. Это задача не из легких, но вполне реальная! Интересно, что сегодня сегвеи используются не только как развлечение — в США на них передвигаются почтовые работники, игроки в гольф и, что особенно поражает, опытные операторы «Стэдикам».

Можете познакомиться с подробной почти часовой инструкцией — правда, она на английском языке.

Если сомневаетесь, что все ли вы правильно поняли, ниже инструкция на русском — чтобы составить общее представление.

Неньютоновская жидкость позволяет делать множество забавных экспериментов. Это абсолютно безопасно и увлекательно. Неньютоновская жидкость — жидкость, вязкость которой зависит от характера внешнего воздействия. Ее можно сделать, смешав воду с крахмалом (один к двум). Думаете, это легко? Не тут-то было. «Фокусы» неньютоновской жидкости начинаются уже в процессе ее создания. Дальше — больше.

Если набрать ее в пригоршню, она будет похожа на монтажную пену. Если начать подбрасывать — будет двигаться как живая. Расслабьте руку — и она начнет растекаться. Сожмите в кулак — станет твердой. Она «танцует», если поднести ее к мощным колонкам, но и вы на ней вполне можете станцевать, если размешаете достаточное для этого количество. В общем, лучше один раз увидеть!

Фомин Даниил

Физика наука экспериментальная и создание приборов своими руками способствует лучшему усвоению законов и явлений. Много различных вопросов возникает при изучении каждой темы.На многие может ответить сам учитель, но насколько чудеснодобыть ответы путем собственного самостоятельного исследования.

Скачать:

Предварительный просмотр:

ОКРУЖНАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ УЧАЩИХСЯ

СЕКЦИЯ «Физика»

Проект

Физический прибор своими руками.

Учащийся 8 а класса

ГБОУ СОШ № 1 пгт. Суходол

Сергиевского района Самарской области

Научный руководитель: Шамова Татьяна Николаевна

учитель физики

  1. Введение.
  1. Основная часть.
  1. Назначение прибора;
  2. инструменты и материалы;
  3. Изготовление прибора;
  4. Общий вид прибора;
  5. Особенности демонстрации прибора.

3.Исследования.

4.Заключение.

5. Список используемой литературы.

1.Введение.

Для того, чтобы поставить необходимый опыт, нужно иметь приборы и измерительные инструменты. И не думайте, что все приборы делаются на заводах. Во многих случаях исследовательские установки сооружаются самими исследователями. При этом считается, что талантливее тот исследователь, который может поставить опыт и получить хорошие результаты не только на сложных, а и на более простых приборах. Сложное оборудование обоснованно применять только в тех случаях, когда без него нельзя обойтись. Так что не надо пренебрегать самодельными приборами- гораздо полезнее сделать их самим, чем пользоваться покупными.

ЦЕЛЬ:

Сделать прибор, установку по физике для демонстрации физических явлений своими руками.

Объяснить принцип действия данного прибора. Продемонстрировать работу данного прибора.

ЗАДАЧИ:

Сделать приборы вызывающие большой интерес у учащихся.

Сделать приборы отсутствующие в лаборатории.

Сделать приборы, вызывающие затруднение в понимании теоретического материала по физике.

Исследовать зависимость периода от длины нити и амплитуды отклонения.

ГИПОТЕЗА:

Сделанный прибор, установка по физике для демонстрации физических явлений своими руками применить на уроке.

При отсутствии данного прибора в физической лаборатории, данный прибор сможет заменить недостающую установку при демонстрации и объяснении темы.

2.Основная часть.

2.1.Назначение прибора.

Прибор предназначен для наблюдения резонанса в механических колебаниях.

2.2.Инструменты и материалы .

Обыкновенная проволока, шарики, гайки, олово, леска. Паяльник.

2.3.Изготовление прибора.

Изогнуть проволоку в виде опоры. Протянуть общую леску. Припаять шарики к гайкам, отмерить леску 2 шт одинаковой длины,остальные должны быть короче и длиннее на несколько сантиметров, подвесить с их помощью шарики. Следить за тем, чтобы маятники с одинаковой длиной лески не оказались рядом. Прибор к опыту готов!

2.4.Общий вид прибора.

2.5.Особенности демонстрации прибора.

Для демонстрации прибора необходимо выбрать маятник, длина которого совпадает с длиной одного из трех оставшихся, если отклонить маятник от положения равновесия и предоставить его самому себе, то он будет совершать свободные колебания. Это вызовет колебания лески, в результате чего на маятники через точки подвеса будет действовать вынуждающая сила, периодически меняющаяся по модулю и направлению с такой же частотой, с какой колеблется маятник. Мы увидим, что маятник с совпадающей длиной подвеса начнет совершать колебания с той же частотой, при этом амплитуда колебаний этого маятника значительно больше амплитуд остальных маятников. В данном случае маятник колеблется в резонанс с маятником 3. Происходит это потому, что амплитуда установившихся колебаний, вызванных вынуждающей силы, достигает наибольшего значения именно при совпадении частоты изменяющей силы с собственной частотой колебательной системы. Дело в том, что в этом случае направление вынуждающей силы в любой момент времени совпадает с направлением движения колеблющегося тела. Таким образом создаются наиболее благоприятные условия для пополнения энергии колебательной системы за счет работы вынуждающей силы. Например, чтобы посильнее раскачать качели, мы подталкиваем их таким образом, чтобы направление действующей силы совпадало с направлением движения качелей. Но следует помнить, что понятие резонанса применимо только к вынужденным колебаниям.

3. Нитяной или математический маятник

Колебания! Наш взгляд падает на маятник стенных часов. Неугомонно спешит он то в одну, то в другую сторону, своими ударами как бы разбивая поток времени на точно размеренные отрезки. «Раз-два, раз-два», - невольно повторяем мы в такт его тиканию.

Отвес и маятник, – простейшие из всех приборов, какими пользуется наука. Тем удивительнее, что столь примитивными орудиями добыты поистине сказочные результаты: человеку удалось, благодаря им, проникнуть мысленно в недра Земли, узнать, что делается в десятках километров под нашими ногами.

Качание влево и обратно вправо, в исходное положение, составляет полное колебание маятника, а время одного полного колебания называют периодом колебания. Число колебаний тела в секунду называется частотой колебания. Маятник – это тело, подвешенное на нити, другой конец которой закреплен. Если длина нити велика по сравнению с размерами подвешенного на ней тела, а масса нити ничтожно мала сравнительно с массой тела, то такой маятник называют математическим или нитяным маятником. Практически маленький тяжелый шарик, подвешенный на легкой длинной нити, можно считать нитяным маятником.

Период колебаний маятника выражается формулой:

Т = 2π √ l / g

Из формулы видно, что период колебаний маятника не зависит от массы груза, амплитуды колебаний, что особенно удивительно. Ведь при различных амплитудах колеблющееся тело за одно колебание проходит разные пути, но время на это тратит всегда одно и то же. Продолжительность качания маятника зависит от длины его и ускорения свободного падения.

В своей работе мы и решили проверить экспериментально, что период не зависит от других факторов и убедиться в справедливости этой формулы.

Изучение зависимости колебаний маятника от массы колеблющегося тела, длины нити и величины начального отклонения маятника.

Исследование.

Приборы и материалы : секундомер, мерная лента.

Измерили период колебаний маятника сначала для массы тела 10 г и угла отклонения 20°, меняя при этом длину нити.

Также измерили период, увеличив угол отклонения до 40°, при массе 10 г и разной длине нити. Результаты измерений занесли в таблицу.

Таблица.

Длина нити

l, м.

Масса

маятника, кг

Угол отклонения

Число колебаний

Полное время

t. c

Период

T. c

0,03

0,01

0.35

0,05

0,01

0,45

0,01

0,63

0,03

0,01

0,05

0,01

0,01

Из опытов мы убедились, что период действительно не зависит от массы маятника и угла отклонения его, но с увеличением длины нити маятника период его колебания возрастет, но не пропорционально длине, а более сложно. Результаты опытов приведены в таблице.

Итак, период колебаний математического маятника зависит только от длины маятника l и от ускорения свободного падения g.

4.Заключение.

Наблюдать за опытом проводимым учителем, интересно. Проводить его самому интереснее вдвойне.

А проводить опыт с прибором, сделанным и сконструированным своими руками, вызывает очень большой интерес у всего класса. В таких опытах легко установить взаимосвязь и сделать вывод как работает данная установка.

5.Литература.

1. Учебное оборудование по физике в средней школе. Под редакцией А.А Покровского «Просвещения» 1973

2. Учебник по физике А. В. Перышкина, Е. М. Гутник «Физика» для 9 класса;

3.Физика:Справ.материалы:О.Ф. Кабардин Учеб.пособие для учащихся. – 3-е изд. – М.:Просвещение,1991.

«Использование самодельных приборов – один из способов активации познавательной деятельности учащихся при изучении физики»

Есенжулова А.Д

2016 год


Знаете ли вы, сколь силён может быть один человек

Фёдор Достоевский

Аннотация

Данный проект предназначен для учителей физики и учащихся 7-11 классов. Он даёт возможность уйти от «меловой» физики, направлен на привлечение школьников к изготовлению приборов и на выявление творческих способностей детей.


Актуальность заключается в том, что изготовление приборов ведет за собой не только повышение уровня знаний, но и выявляет основное направление деятельности учащихся. При работе над прибором мы уходим от «меловой» физики. Оживает сухая формула, материализуется идея, возникает полное и четкое понимание. С другой стороны, подобная работа является хорошим примером общественно-полезного труда: удачно сделанные самодельные приборы могут значительно пополнить оборудование школьного кабинета. Самодельные приборы имеют и другую постоянную ценность: их изготовление, с одной стороны, развивает у учителя и учащихся практические умения и навыки, а с другой - свидетельствует о творческой работе, о методическом росте учителя.


Выход из затруднительного положения чаще всего бывает там, где был вход…

Карел Чапек

Проблемные вопросы

  • Стоит ли заниматься изготовлением самодельных приборов по физике, когда промышленность выпускает их в достаточном количестве и высокого качества?
  • Как без материальных затрат пополнить кабинет физики оборудованием?
  • Какие самодельные приборы надо изготавливать?

Сделать приборы, установки по физике для демонстрации физических явлений, объяснить принцип действия каждого прибора и продемонстрировать их работу.

Гипотеза

Наличие самодельных приборов в школьном кабинете физики расширяет возможности совершенствования учебного эксперимента и улучшает постановку научно - исследовательских работ.


1) изучить научную и популярную литературу по созданию самодельных приборов;

2) сделать приборы по конкретным темам, которые вызывают затруднение в понимании теоретического материала по физике;

3) сделать приборы отсутствующие в лаборатории;



Результаты диагностики

Что вам нравится при изучении физике ?

а) решение задач -19%;

б) демонстрация опытов - 21%;

в) чтение учебника дома - 4%;

г) рассказ учителем нового материала - 17%;

д) самостоятельное выполнение опытов -36%;

е) ответ у доски -3%.

Какое домашнее задание вы предпочитаете выполнять?

а) чтение учебника -22%;

б) решение задач из учебника -20%;

в) наблюдение физических явлений -40%;

г) составление задач -7%;

д) изготовление простых устройств, моделей -8 %;

е) решение трудных задач – 3 %.

На каком уроке вам интересно?

а) на контрольной работе - 3%;

б) на лабораторной работе - 60%;

в) на уроке решения задач - 8%;

г) на уроке изучения нового материала - 22%;

д) не знаю -7 %.


Самодельный прибор

Своими руками



Самодельный прибор

Дробилка



Самодельный прибор

Швейная машина

Ученик 9 ж Тищенко А


Самодельный прибор







Жангабаев А 10 Д класс

Нуранов А 10 Г класс


1. Самодельные физические установки обладает большей дидактической отдачей.

2. Самодельные установки создаются под конкретные условия.

3. Самодельные установки априорно более надёжны.

4. Самодельные установки намного дешевле, чем государственные приборы.

5. Самодельные установки часто определяют судьбу школьника.


Один опыт я ставлю выше, чем тысячу мнений,

рождённых только воображением

М.Ломоносов

Заключение

Замечательно, если наш проект «зарядит» творческим оптимизмом, заставит кого-то поверить в свои силы. Ведь в этом и состоит его главная цель: сложное представить доступным, стоящим любых усилий и способным дать человеку ни с чем не сравнимую радость постижения, открытия. Возможно, наш проект взбодрит кого-то на творчество. Ведь творческая бодрость, как крепкая упругая пружина, затаившая заряд мощного удара. Не зря гласит мудрый афоризм: «Только начинающий творец всемогущ!»


Предложение:

Оценку состояния и работы школьных кабинетов физики проводить не по сомнительным миллионам рублей, затраченным на сомнительное псевдооборудование, а по количеству самодельных установок, охвату ими школьного курса физики и учеников школы.


Мастера… Профессионалы

Те, что в жизни постичь смогли

Щедрость камня, душу металла

Свежесть формулы, нрав земли

Мастера. Мастаки. Умельцы

Понимающие до глубин

Механизм станка и сердца

Ход смычка или гул турбин

Руки вещие простирая

К перекрёсткам звёздных миров

Время движется мастерами и надеется на мастеров!

… А они стоят, будто крепости,

В правоте своего труда

И не могут иначе

И требуются

Роберт Рождественский


Литература

1. Н.М. Шахмаев Физический эксперимент в средней школе.

2. Л.И.Анциферов. Самодельные приборы для физического практикума.

3. Н.М.Маркосова. Изучение ультразвука в курсе физики.

4. Н.М.Зверева. Активизация мышления учащихся на уроках физики.

5. С.Павлович. Приборы и модели по неживой природе.

6. И.Я.Ланина. Не уроком единым.

7. С.А.Хорошавин. Физико-техническое моделирование.

8. Л.И Анциферов « Самодельные приборы для Физического практикума» Москва Просвещение 1985 г

9. А.И Уханов « Самодельные приборы по физике» Саратов СГУ 1978



Новое на сайте

>

Самое популярное