Домой Водоснабжение Самые лёгкие и прочные материалы на Земле. Самый легкий материал в мире Используют прочные и легкие материалы

Самые лёгкие и прочные материалы на Земле. Самый легкий материал в мире Используют прочные и легкие материалы


Если вы следите за новинками в мире современных технологий, то данный материал не будет для вас большой новостью. Тем не менее, рассмотреть более детально самый легкий материал в мире и узнать еще немного подробностей полезно.


Менее года назад звание самого легкого в мире материала получил материал под названием аэрографит. Но этому материалу не получилось долго удерживать пальму первенства, ее не так давно перехватил другой углеродный материал под названием графеновый аэрогель. Созданный исследовательской группой лаборатории Отдела науки о полимерах и технологиях университета Чжэцзяна (Zhejiang University), которую возглавляет профессор Гэо Чэо (Gao Chao), сверхлегкий графеновый аэрогель имеет плотность немного ниже плотности газообразного гелия и чуть выше плотности газообразного водорода.

Аэрогели, как класс материалов, были разработаны и получены в 1931 году инженером и ученым-химиком Сэмюэлем Стивенсом Кистлером (Samuel Stephens Kistler). С того момент ученые из различных организаций вели исследования и разработку подобных материалов, невзирая на их сомнительную ценность для практического использования. Аэрогель, состоящий из многослойных углеродных нанотрубок, получивший название «замороженный дым» и имевший плотность 4 мГ/см3, потерял звание самого легкого материала в 2011 году, которое перешло к материалу из металлической микрорешетки, имеющему плотность 0.9 мГ/см3 . А еще год спустя звание самого легкого материала перешло к углеродному материалу под названием аэрографит , плотность которого составляет 0.18 мг/см3.

Новый обладатель звания самого легкого материала, графеновый аэрогель, созданный командой профессора Чэо, имеет плотность 0.16 мГ/см3. Для того, чтобы создать столь легкий материала ученые использовали один из самых удивительных и тонких материалов на сегодняшний день - графен. Используя свой опыт в создании микроскопических материалов, таких, как «одномерные» графеновые волокна и двухмерные графеновые ленты, команда решила добавить к двум измерениями графена еще одно измерение и создать объемный пористый графеновый материал.

Вместо метода изготовления по шаблону, в котором используется материал-растворитель и с помощью которого обычно получают различные аэрогели, китайские ученые использовали метод сублимационной сушки. Сублимационная сушка коолоидного раствора, состоящего из жидкого наполнителя и частиц графена, позволила создать углеродистую пористую губку, форма которой почти полностью повторяла заданную форму.


«Отсутствие потребности использования шаблонов размеры и форма создаваемого нами углеродного сверхлегкого материала зависит только от формы и размеров контейнера» - рассказывает профессор Чэо, - «Количество изготавливаемого аэрогеля зависит только от величины контейнера, который может иметь объем, измеряемый тысячами кубических сантиметров».

Получившийся графеновый аэрогель является чрезвычайно прочным и упругим материалом. Он может поглотить органические материалы, в том числе и нефть, по весу превышающие в 900 раз его собственный вес с высокой скоростью поглощения. Один грамм аэрогеля поглощает 68.8 грамма нефти всего за одну секунду, что делает его привлекательным материалом для использования в качестве поглотителя разлитой в океане нефти и нефтепродуктов.


Помимо работы в качестве поглотителя нефти графеновый аэрогель имеет потенциал для использования в системах аккумулирования энергии, в качестве катализатора для некоторых химических реакциях и в качестве наполнителя для сложных композитных материалов.

Самый легкий материал в мире January 8th, 2014

Если вы следите за новинками в мире современных технологий, то данный материал не будет для вас большой новостью. Тем не менее, рассмотреть более детально самый легкий материал в мире и узнать еще немного подробностей полезно.

Менее года назад звание самого легкого в мире материала получил материал под названием аэрографит. Но этому материалу не получилось долго удерживать пальму первенства, ее не так давно перехватил другой углеродный материал под названием графеновый аэрогель. Созданный исследовательской группой лаборатории Отдела науки о полимерах и технологиях университета Чжэцзяна (Zhejiang University), которую возглавляет профессор Гэо Чэо (Gao Chao), сверхлегкий графеновый аэрогель имеет плотность немного ниже плотности газообразного гелия и чуть выше плотности газообразного водорода.

Аэрогели, как класс материалов, были разработаны и получены в 1931 году инженером и ученым-химиком Сэмюэлем Стивенсом Кистлером (Samuel Stephens Kistler). С того момент ученые из различных организаций вели исследования и разработку подобных материалов, невзирая на их сомнительную ценность для практического использования. Аэрогель, состоящий из многослойных углеродных нанотрубок, получивший название «замороженный дым» и имевший плотность 4 мГ/см3, потерял звание самого легкого материала в 2011 году, которое перешло к материалу из металлической микрорешетки, имеющему плотность 0.9 мГ/см3 . А еще год спустя звание самого легкого материала перешло к углеродному материалу под названием аэрографит , плотность которого составляет 0.18 мг/см3.

Новый обладатель звания самого легкого материала, графеновый аэрогель, созданный командой профессора Чэо, имеет плотность 0.16 мГ/см3. Для того, чтобы создать столь легкий материала ученые использовали один из самых удивительных и тонких материалов на сегодняшний день — графен. Используя свой опыт в создании микроскопических материалов, таких, как «одномерные» графеновые волокна и двухмерные графеновые ленты, команда решила добавить к двум измерениями графена еще одно измерение и создать объемный пористый графеновый материал.

Вместо метода изготовления по шаблону, в котором используется материал-растворитель и с помощью которого обычно получают различные аэрогели, китайские ученые использовали метод сублимационной сушки. Сублимационная сушка коолоидного раствора, состоящего из жидкого наполнителя и частиц графена, позволила создать углеродистую пористую губку, форма которой почти полностью повторяла заданную форму.

«Отсутствие потребности использования шаблонов размеры и форма создаваемого нами углеродного сверхлегкого материала зависит только от формы и размеров контейнера» — рассказывает профессор Чэо, — «Количество изготавливаемого аэрогеля зависит только от величины контейнера, который может иметь объем, измеряемый тысячами кубических сантиметров».

Получившийся графеновый аэрогель является чрезвычайно прочным и упругим материалом. Он может поглотить органические материалы, в том числе и нефть, по весу превышающие в 900 раз его собственный вес с высокой скоростью поглощения. Один грамм аэрогеля поглощает 68.8 грамма нефти всего за одну секунду, что делает его привлекательным материалом для использования в качестве поглотителя разлитой в океане нефти и нефтепродуктов.

Помимо работы в качестве поглотителя нефти графеновый аэрогель имеет потенциал для использования в системах аккумулирования энергии, в качестве катализатора для некоторых химических реакциях и в качестве наполнителя для сложных композитных материалов.

Всем известно, что на настоящий момент алмаз является эталоном твёрдости, т.е. при определении твёрдости материала за основу берется показатель твёрдости алмаза. В нашей статье мы рассмотрим десять самых твёрдых материалов в мире и посмотрим насколько они тверды относительно алмаза. Материал считается сверхтвёрдым если его показатели находятся выше 40 ГПа. Нужно учесть, что твёрдость материала может колебаться в зависимости от внешних факторов, в частности от приложенной к нему нагрузки. Итак, представляем десять самых твёрдых материалов в мире.

10. Субоксид бора

Субоксид бора состоит из зёрен имеющих форму выпуклых двадцатигранников. Эти зёрна состоят, в свою очередь, из двадцати кристаллов-многогранников, гранями которого являются четыре треугольника. Субоксид бора имеет повышенную прочность в 45 ГПа.

9. Диборид рения

Диборид рения очень интересный материал. При малых нагрузках он ведет себя как сверхтвёрдый, имея прочность в 48 ГПа, а при нагрузке его твердость снижается до 22 ГПа. Этот факт вызывает бурные дискуссии у ученых всего мира относительно того стоит ли считать диборид рения сверхтвёрдым материалом.

8. Борид магния-алюминия

Борид магния-алюминия составляет собой сплав алюминия, магния и бора. Этот материал имеет невероятно низкие показатели трения скольжения. Это уникальное свойство могло бы стать настоящей находкой в производстве разнообразных механизмов, ведь детали из борида магния-алюминия способны работать без смазки. К сожалению, сплав невероятно дорог, что на данный момент закрывает ему дорогу к широкому применению. Твердость борид магния-алюминия — 51 ГПа.

7. Бор-углерод-кремний

Соединение Бор-углерод-кремний обладает невероятной устойчивостью к высочайшим температурам и химическому воздействию. Твердость Бор-углерод-кремния — 70 ГПа.

6. Карбид бора

Карбид бора был открыт еще в 18 веке и начал использоваться почти сразу во многих отраслях промышленности. Его используют при обработке металлов и сплавов, при изготовлении химической посуды, а также в энергетике и электронике. Используется как основное вещество для пластин бронежилетов. Твердость карбида бора составляет 49 ГПа, а добавляя в него аргон в виде ионов, можно увеличить этот показатель до 72 ГПа.

5. Нитрид углерода-бора

Нитрид углерода-бора является одним из представителей достижений современной химии, он был синтезирован сравнительно недавно Твердость нитрид углерода-бора — 76 ГПа.

4. Наноструктурированный кубонит

Наноструктурированный кубонит имеет и другие названия: кингсонгит, боразон или эльбор. Материал обладает показателями твёрдости близкими к алмазу и успешно применяется в промышленности при обработке различных металлов и сплавов. Твердость наноструктурированного кубонита — 108 ГПа.

3. Вюртцитный нитрид бора

Структура кристаллов этого вещества имеет особую вюрцитную форму, она то и позволяет быть ему одним из лидеров по твёрдости. При приложении нагрузки связи между атомами в кристаллической решётке перераспределяются и твёрдость материала повышается почти на 75%! Твердость вюрцитного нитрида бора — 114 ГПа.

2. Лонсдейлит

Лонсдейлит по своей структуре очень похож на алмаз, ведь они оба являются аллотропными модификациями углерода. Лонсдейлит был обнаружен в воронке метеорита, одним из компонентов которого являлся графит . По всей видимости от нагрузок, вызванных взрывом метеорите, графит превратился в лонсдейлит. При обнаружении лонсдейлит не продемонстрировал особых чемпионских показателей твёрдости, однако было доказано, что при отсутствии в нём примесей, он будет твёрже алмаза! Доказанный показатель твердости лонсдейлита — до 152 ГПа

1. Фуллерит

Пришло время рассмотреть самое твёрдое вещество в мире — фуллерит. Фуллерит — это кристалл, который состоит из молекул, а не из отдельных атомов. Благодаря этому фуллерит обладает феноменальной твердостью, он способен легко царапать алмаз, также как сталь царапает пластик! Твердость фуллерита — 310 ГПа.

Фуллерит

Мы привели список самых твёрдых материалов в мире на данный момент. Как видим, среди них достаточно веществ твёрже алмаза и,возможно, нас ждут впереди ещё новые открытия, которые позволят получить материалы с ещё более высокими показателями твёрдости!

Легкий и прочный материал по весу, как алюминий, но почти в 25 раз более прочный за счет применения нанотрубок нитрида бора.

Описание:

композитный материал на основе алюминия. Он такой же легкий, как алюминий, но почти в 25 раз более прочный, что позволяет сопоставлять его со сталью . Упрочение производится при помощи нанотрубок нитрида бора.

Нанотрубки из нитрида бора являются структурными аналогами углеродных нанотрубок . Нитрид бора (химическая формула: BN)- бинарное соединение бора и азота. Нитрид бора, так же как и углерод, может образовывать листы толщиной в один атом, которые скатываются в цилиндры для создания нанотрубок.

Нанотрубки нитрида бора. Масштабная линейка – 1 микрометр:

Виды композитов:

нанокомпозиты, созданные путем напыления металла на нанотрубки;

тонкая лента, которая выглядит как обычная алюминиевая, но в нее внедрены наноструктуры. Прочность этих структур превышает сталь в 50 раз.


Преимущества нанотрубок из нитрида бора:

– прямые, эластичные, их расположением легче управлять, добиваясь равномерной и соответственно более прочной текстуры материала;

по сравнению с углеродными нанотрубками более стабильны при высоких температурах;

– могут быть использованы для экранирования нейтронного и ультрафиолетового излучения;

обладают пьезоэлектрическими свойствами – могут генерировать электрический заряд при растяжении;

– нитрид бора химически пассивен, он слабо реагирует с кислотами и растворами.

Преимущества материала:

– техника, изготовленная с применением легкого и прочного материала, станет легче, сохранив при этом остальные важные качества;

сокращение расхода топлива при перевозке деталей из легкого и прочного материала, увеличение дальности передвижения и объемов перевозимых грузов.

Легкий и прочный материал может применяться:

в самолетостроении;

в машиностроении;

в строительстве разной степени сложности;

в биомедицине и др.

Прочные материалы имеют широкий спектр использования.

Вконтакте

Однокласники

Есть не только самый твёрдый металл, но и самая твердая и прочная древесина, а так же самые прочные искусственно созданные материалы.

Где используют самые прочные материалы?

Сверхпрочные материалы применяют во многих сферах жизни. Так, химики Ирландии и Америки разработали технологию, посредством которой производится прочное текстильное волокно.

Нить этого материала в диаметре – пятьдесят микрометров. Она создана из десятков миллионов нанотрубок, которые с помощью полимера скреплены между собой.



Особо прочные текстильные материалы пользуются спросом

Прочность этого электропроводящего волокна на разрыв выше прочности паутины паука-кругопряда в три раза. Полученный материал используется для изготовления сверхлегких бронежилетов и спортивного инвентаря.

Название еще одного прочного материала – ONNEX, созданного по заказу Министерства обороны США. Кроме применения его при производстве бронежилетов, новый материал можно так же использовать в системах летного контроля, сенсорах, двигателях.



Особые нано-трубки делают материалы особенно прочными

Существует разработанная учеными технология, благодаря которой прочные, твердые, прозрачные и легкие материалы получают посредством преобразования аэрогелей.

На их основе можно производить облегченные бронежилеты, броню для танков и прочные строительные материалы. Новосибирские ученые изобрели плазменный реактор нового принципа, благодаря которому можно производить нанотубулен – сверхпрочный искусственный материал.

Этот материал открыли еще двадцать лет назад. Он представляет собой массу эластичной консистенции. Она состоит из сплетений, которые невозможно увидеть невооруженным глазом. Толщина стенок данных сплетений – один атом.



Российские ученые изобрели супер-надежный материал нанотубулен

То что атомы как бы вложены друг в друга по принципу «русской матрешки», делает нанотубулен наиболее прочным материалом из всех известных.

При добавлении этого материала в бетон, металл, пластик, значительно усиливаются их прочность и электропроводность. Нанотубулен поможет сделать машины и самолеты более прочными. Если же новый материал придет в широкое производство, то очень прочными могут стать дороги, дома, техника.

Разрушить их будет очень сложно. Нанотубулен до сих пор не был внедрен в широкое производство из-за очень высокой себестоимости. Однако новосибирским ученым удалось значительно снизить себестоимость этого материала. Теперь нанотубулен можно производить не килограммами, а тоннами.



Нанотубулен пока не нашел широкого применения

Самый твердый металл

Среди всех известных металлов самым твердым является хром, однако его твердость во многом зависит от чистоты. Его свойства – коррозионностойкость, жаропрочность и тугоплавкость. Хром – металл беловато-голубого оттенка. Его твердость по Бринеллю равна 70-90 кгc/см2.

Температура плавления самого твердого металла – тысяча девятьсот семь градусов по Цельсию при плотности семь тысяч двести кг/м3.

Этот металл находится в земной коре в размере 0,02 процента, что немало. Обычно он встречается в виде хромистого железняка. Хром добывают из силикатных горных пород.



Хром считается самым прочным металлом

Этот металл используют в промышленности, выплавляя хромистую сталь, нихром и так далее. Его применяют для антикоррозийных и декоративных покрытий. Хромом очень богаты падающие на Землю каменные метеориты.

Самое прочное дерево

Есть древесина, которая превосходит по прочности чугун и может сравниться с прочностью железа. Речь идет о «Березе Шмидта». Ее так же называют Железной березой. Человек не знает более прочного дерева, чем это. Открыл ее русский ученый-ботаник по фамилии Шмидт, находясь на Дальнем Востоке.



Береза Шмидта - самое прочное дерево Древесина превышает по прочности чугун в полтора раза, прочность на изгиб примерно равна прочности железа.

Из-за таких свойств, железная береза вполне могла бы иногда заменять металл, ведь эта древесина не подвержена коррозии и гниению. Корпус судна, сделанный из Железной березы можно даже не красить, судно не разрушит коррозия, действие кислот ему тоже не страшно.



Береза Шмидта прочнее железа

Березу Шмидта невозможно пробить пулей, топором ее не срубишь. Из всех берез нашей планеты долгожителем является именно Железная береза – она живет четыреста лет.

Ее место произрастания – заповедник Кедровая Падь. Это редкий охраняемый вид, который занесен в Красную Книгу. Если бы не такая редкость, сверхпрочную древесину этого дерева можно было бы повсеместно использовать.

А вот самые высокие деревья в мире секвойи не являются очень прочным материалом. Зато, по данным uznayvse.ru, могут вырастать до 150 метров в высоту.

Самый прочный материал во вселенной

Наиболее прочным и одновременно легким материалом нашей вселенной является графен. Это углеродная пластина, толщина которой всего один атом, но она прочнее алмаза, а электропроводность в сто раз выше кремния компьютерных чипов.



Новое на сайте

>

Самое популярное