Домой Проекты домов Скачать программный комплекс пожарная безопасность. Интеграция систем автоматической пожарной защиты здания

Скачать программный комплекс пожарная безопасность. Интеграция систем автоматической пожарной защиты здания

Так какую же роль играют АСУ в деятельности органов пожарной охраны и МЧС? Как их можно использовать для улучшения деятельности указанных структур и возможно ли это?

Дальнейшее совершенствование деятельности пожарной охраны невозможно без широкого внедрения АСУ. Это подтверждается зарубежным опытом, а также результатами внедрения АСУ в ряде гарнизонов пожарной охраны в России.

В крупном плане АСУ в пожарной охране представляет собой объединенную в локальную сеть совокупность автоматизированных рабочих мест (АРМ) специалистов, занимающихся вопросами административно-хозяйственной деятельности; пожарной профилактики объектов; оперативного управления силами и средствами тушения пожаров. Каждая из указанных подсистем обладает достаточной автономностью, целесообразно их поэтапное внедрение. Так как наиболее важной подсистемой является подсистема оперативного управления силами и средствами тушения пожаров, то вполне логично внедрение новых информационных технологий в пожарной охране, начиная с автоматизации этих процессов. В дальнейшем мы будем называть данную подсистему АСОУПО – автоматизированная система оперативного управления пожарной охраной. Более подробное рассмотрение данной АСУ начнем с ее части – автоматизированной системы управления пожарной автоматикой.

1. Автоматизированная система управления пожарной автоматикой (асу па)

Состав технологического комплекса противопожарной защиты:

    противопожарная насосная, имеющая в своем составе насосы воды, насосы пены и циркуляционные насосы;

    камера управления задвижками;

    дозирующие системы с резервуарами и трубопроводами пенообразователя;

    резервуары противопожарного запаса воды;

    водозаборные скважины с водопроводом производственным;

    система противопожарного водопровода;

    приборы приемно-контрольные, пожарные извещатели и оповещатели, установленные на технологическом и административно-бытовом оборудовании.

Структура программно-технического комплекса (птк) асу па

АСУ ПА для конкретного технологического объекта компонуется проектным путем из типовых программных и аппаратных модулей. Модули АСУ ПА поставляются в виде конструктивно и функционально законченных изделий:

    пожарные станции управления;

    операторские станции.

При проектировании АСУ ПА применяется широкая номенклатура модулей ввода-вывода, обеспечивающая возможность создания пожарных станций управления различного назначения и производительности (от единиц до нескольких сотен входных/выходных сигналов).

Такая гибкая модульная структура программно-технического комплекса позволяет обеспечить для каждого технологического объекта оптимальный уровень автоматизации процесса пожаротушения, достаточный для своевременного обнаружения очагов пожара и оповещения о них, а также эффективного управления процессом пожаротушения. Аппаратные и программные средства могут наращиваться поэтапно, что позволяет масштабировать систему в соответствии с текущими потребностями производства. Общая производительность системы может достигать нескольких тысяч входных/выходных сигналов.

АСУ ПА имеет открытую архитектуру, обеспечивающую возможность развития системы и расширения ее функций, подключение к системе различных типов контроллеров, интеллектуальных приборов, устройств сопряжения с вышестоящими системами управления.

Функции системы:

    сбор и обработка информации о пожаре, о работе установок пожаротушения при пожаре и в дежурном режиме;

    распознавание и сигнализация аварийных ситуаций, отклонений параметров от заданных пределов, отказов пожарного оборудования;

    отображение информации о пожаре и состоянии установок пожаротушения в виде мнемосхем процесса и стандартных видеограмм с индикацией на них значений параметров и их отклонений;

    регистрация всех контролируемых и расчетных параметров и событий и архивирование их в базе данных;

    формирование отчетной документации;

    изменение в процессе эксплуатации параметров настройки (уставок сигнализации и блокировок);

    автоматическое управление установками пожаротушения;

    автоматическое управление средствами сигнализации;

    дистанционное управление с рабочего места оператора;

    блокировка технологических и вентиляционных систем при пожаре.

АСУ ПА может быть включена в автоматизированную систему безопасности, т.е. являться компонентом более сложной системы, обеспечивающей комплексную безопасность объекта. Обобщенная схема данной системы представлена на рис.1.5.

Назначение и задачи ПС

Основные задачи функционирования системы пожарной сигнализации в совокупности с организационными мероприятиями – это задачи спасения жизни людей и сохранения имущества. Минимизация ущерба при пожаре напрямую зависит от своевременного обнаружения и локализации очага возгорания.

Термины и определения

Шлейф пожарной сигнализации – это линия связи в системе пожарной сигнализации между приёмно-контрольным прибором, пожарным извещателем и другими техническими средствами системы пожарной сигнализации

Пожарные извещатели – техническое средство, предназначенное для обнаружения факторов пожара и/или формирования сигнала о пожаре. Существуют различные факторы пожара – дым, тепло, открытое пламя.

Приёмно-контрольные приборы – многофункциональные устройства, предназначенные для приёма сигналов от извещателей по шлейфам сигнализации, включения световых и звуковых оповещателей, выдачи информации на пульты централизованного наблюдения, обеспечения процедуры управления состоянием зон (шлейфов) с помощью органов управления. В качестве органов управления можно использовать выносные и встроенные клавиатуры с секретными кодами, а также считыватели совместно с электронными идентификаторами (карточками и ключами).

Оповещатели - устройства для оповещения людей о тревоге на объекте с помощью звуковых или световых сигналов.

ВУОС – выносное устройство оптической индикации. Предназначены для определения места сработавшего извещателя (если извещатели не имеют своего адресного устройства).

Принципы обнаружения факторов пожара

В системах пожарной сигнализации извещатели предназначены для обнаружения конкретного фактора пожара или комбинаций факторов:

  • Дым. При оценке этого фактора извещателем анализируется наличие продуктов горения в воздухе в объёме защищаемого помещения. Можно выделить два наиболее распространённых типа извещателей, работающих по факту обнаружения дыма:

Извещатели, производящие локальный (точечный) контроль оптической плотности воздуха, попадающего в оптическую камеру извещателя при перемещении воздушных потоков в помещении. Для этого в оптической камере пожарного извещателя под определённым углом устанавливаются инфракрасный светодиод и фотоприёмник. В дежурном режиме работы извещателя инфракрасное излучение от светодиода не попадает на фотоприёмник. Однако при наличии в оптической камере дыма, его частицы рассеивают инфракрасное излучение, и оно достигает фотоприёмника. При потоке отражённого света выше установленной величины извещатель пожарный дымовой формирует сигнал пожарной тревоги.

Извещатели, контролирующие оптическую плотность воздуха в определённом объёме (линейные извещатели). Данные извещатели являются двухкомпонентными, состоящими из излучателя и приёмника (либо из одного блока приёмника-излучателя и отражателя). Приёмник и передатчик такого извещателя располагаются у потолка на противоположных стенах защищаемого помещения. В дежурном режиме сигнал передатчика фиксируется приёмником. В случае возгорания дым, поднимается к потолку, отражая и рассеивая сигнал передатчика. В приёмнике вычисляется отношение уровня текущей величины этого сигнала к уровню сигнала, соответствующему сигналу в дежурном режиме. При достижении определённого порога этой величины формируется тревожное извещение о пожарной тревоге.

Тепло. В данном случае извещателями оценивается величина и рост температуры в защищаемом помещении. Тепловые извещатели подразделяются на:

      • Максимальные – формирующие извещение о пожаре при достижении ранее заданных значений температуры окружающей среды;
      • Дифференциальные - формирующие извещение о пожаре при превышении скорости нарастания температуры окружающей среды выше установленного порогового значения;
      • Максимально-дифференциальные - совмещающие функции максимального и дифференциального тепловых пожарных извещателей.
      • Открытое пламя. Извещатели пламени реагируют на такой фактор, как излучение пламени или тлеющего очага. Пламя различных материалов является источником оптического излучения, имеющим свои особенности в различных областях спектра. Соответственно, различные очаги горения имеют свою индивидуальную спектральную характеристику. Поэтому тип датчика выбирается с учётом особенностей источников излучения, расположенных в поле его действия. Извещатели пламени подразделяются на:
        • Ультрафиолетовые – используют диапазон от 185 до 280 нм – область ультрафиолета;
        • Инфракрасные – реагируют на инфракрасную часть спектра пламени;
        • Многоспектральные – реагирующие как на ультрафиолетовую часть спектра, так и на инфракрасную. Для реализации этого метода выбираются несколько приёмников, способных реагировать на излучение в различных участках спектров излучения источника.
        • Особое место отводится обнаружению факторов пожара непосредственно человеком через его органы чувств. В таких случаях для ручного включения сигнала пожарной тревоги в системах пожарной сигнализации устанавливаются ручные пожарные извещатели.

Типы пожарной сигнализации

Неадресная (традиционная) система пожарной сигнализации

В таких системах приёмно-контрольные приборы определяют состояние шлейфа сигнализации, измеряя электрический ток в шлейфе сигнализации с установленными в него извещателями, которые могут находиться лишь в двух статических состояниях: «норма» и «пожар». При фиксации фактора пожара извещатель формирует извещение «пожар», скачкообразно изменяя своё внутреннее сопротивление и, как следствие, изменяется ток в шлейфе сигнализации.

Важно отделить тревожные извещения от служебных, связанных с неисправностями в шлейфе сигнализации или ложными срабатываниями. Поэтому весь диапазон значений сопротивления шлейфа для приемно-контрольного прибора разделён на несколько областей, за каждой из которых закреплён один из режимов («Норма», «Внимание», «Пожар», «Неисправность»). Извещатели определённым образом подключаются к линии шлейфа сигнализации, с учетом их индивидуального внутреннего сопротивления в состоянии «норма» и «пожар».

Для традиционных систем предусматриваются такие особенности, как возможность автоматического сброса питания пожарного извещателя с целью подтверждения сработки, возможность обнаружения нескольких сработавших извещателей в шлейфе, а также реализация механизмов, предусматривающих минимизацию влияния переходных процессов в шлейфах.

Адресно-пороговая система пожарной сигнализации

Отличие адресно-пороговой системы сигнализации от традиционной заключается в топологии построения схемы и алгоритме опроса датчиков. Приёмно-контрольный прибор циклически опрашивает подключенные пожарные извещатели с целью выяснить их состояние. При этом каждый извещатель в шлейфе имеет свой уникальный адрес и может находиться уже в нескольких статических состояниях: «норма», «пожар», «неисправность», «внимание», «запылён» и проч. В отличие от традиционных систем подобный алгоритм опроса позволяет с точностью до извещателя определить место возникновения пожара. Противопожарными нормами в России допускается установка одного адресного извещателя для обнаружения пожара при условии, что по срабатыванию этого пожарного извещателя не формируется сигнал на управление установками пожаротушения или системами оповещения о пожаре 5-го типа.

Адресно-аналоговая система пожарной сигнализации

Адресно-аналоговые системы на текущий момент являются самыми прогрессивными, они обладают всеми преимуществами адресно-пороговых систем, а также дополнительным функционалом. В адресно-аналоговых системах решение о состоянии объекта принимает контрольный прибор, а не извещатель. То есть, в конфигурации контрольного прибора для каждого подключенного адресного устройства заданы пороги срабатывания («Норма», «Внимание» и «Пожар»). Это позволяет гибко формировать режимы работы пожарной сигнализации для помещений с разной степенью внешних помех (пыль, уровень производственной задымленности и др.), в том числе в течение суток. Контрольный прибор постоянно производит опрос подключенных устройств и анализирует полученные значения, сравнивая их с пороговыми значениями, заданными в его конфигурации. При этом топология адресной линии, к которой подключены извещатели, может быть кольцевой. В этом случае обрыв адресной линии приведёт к тому, что она просто распадётся на два радиальных независимых шлейфа, которые полностью сохранят свою работоспособность.

Перечисленные особенности адресно-аналоговых систем формируют такие преимущества перед другими видами систем пожарной сигнализации, как раннее обнаружение возгораний, низкий уровень ложных тревог. Контроль работоспособности пожарных извещателей в режиме реального времени позволяет заранее выделить извещатели, перспективные для обслуживания и составить план для выезда специалистов обслуживающей организации на объект. Количество защищаемых помещений одним контроллером определяется адресной ёмкостью этого контроллера.

О применимости систем

На первый взгляд использовать традиционные системы целесообразно на малых и средних объектах, когда одним из главных критериев выбора является относительно низкая стоимость системы. А стоимость системы по большей части определяется стоимостью извещателя. На сегодняшний день обычные неадресные извещатели относительно дёшевы. Несмотря на то, что использование современных алгоритмов цифровой обработки сигналов в приемно-контрольных приборах позволяет существенно повысить надежность детектирования сигнала от извещателей, и как следствие – снизить вероятность ложных тревог, всё-таки нужно учесть, что зачастую такие извещатели не обеспечивают достаточного уровня надёжности. И – как следствие данного факта – необходимость установки в одном помещении как минимум двух или даже трёх извещателей. Традиционные системы не обеспечивают удобства и в монтаже – шлейфы в таких системах могут быть только радиальными. Соответственно, чем система больше – тем больше линий связи нужно смонтировать и тем больше извещателей установить.

Когда критерий надёжности выходят на первый план, можно уже говорить об установки адресно-пороговой или адресно-аналоговой системы на объекте.

На тех же самых малых и средних объектах целесообразно использовать адресно-пороговые системы, сочетающие преимущества адресно-аналоговых и традиционных систем. В данном случае мы уже можем устанавливать в помещении один извещатель (стоимость которого несколько ниже, чем стоимость адресно-аналогового извещателя), свободную топологию линии (шина или кольцо), а также для адресных извещателей нет необходимости использовать ВУОСы. Однако стоит учесть, что для таких систем нет возможности использовать изоляторы короткого замыкания в шлейфе, а также определять точное место обрывы кольцевого шлейфа. Обслуживание таких систем проводится так же в планово-предупредительном порядке.

Адресно-аналоговые системы лишены таких недостатков. Преимущества монтажа таких систем очевидны – свободная топология плюс возможности использования изоляторов короткого замыкания и определения места обрыва линии, возможность задания аналоговых значений для тревожных сообщений "Внимание», «Пожар» (причём для дня и ночи эти значения могут быть разными), а также для значения «Запылённости». При использовании адресно-аналоговой системы экономия на обслуживании очевидна - контроль работоспособности пожарных извещателей в режиме реального времени позволяет заранее выделить извещатели, перспективные для обслуживания и составить план для выезда специалистов обслуживающей организации на объект. В программном обеспечении микроконтроллеров адресно-аналоговых извещателей компании «Болид» внедрены алгоритмы, исключающие ложные срабатывания при различных воздействиях окружающей среды

Неадресная система пожарной сигнализации с использованием приборов ИСО «Орион»

Для построения неадресной пожарной сигнализации в интегрированной системе охраны «Орион» производства компании «Болид» можно применить следующие приёмно-контрольные приборы с контролем радиальных шлейфов сигнализации:

  • Сигнал-20П;
  • Сигнал-20М;
  • Сигнал-10;
  • С2000-4.

Все приборы, за исключением «Сигнал-20П», могут работать в автономном режиме. Однако при использовании приборов для организации пожарной сигнализации обычно также в системе применяется сетевой контроллер – пульт «С2000М» (или «С2000»). Пульт в системах ПС может выполнять функции отображения событий, происходящих в системе, а также функции управления реле, если используются дополнительные релейные модули. В случае потребности в блоках индикации пульт также необходим.

В зависимости от типа подключаемых пожарных извещателей, при программировании конфигураций приборов шлейфам может быть присвоен один из типов:

Тип 1. Пожарный дымовой с распознаванием двойной сработки .

В ШС включаются пожарные дымовые (нормально-разомкнутые) извещатели.

  • «Обрыв» − сопротивление ШС более 6 кОм;

При срабатывании извещателя прибор формирует сообщение «Сработка датчика» и осуществляет перезапрос состояния ШС: на 3 с сбрасывает (кратковременно отключает) питание ШС. Если в течение 55 секунд после сброса извещатель срабатывает повторно, то ШС переходит в режим «Внимание». Если повторного срабатывания извещателя в течение 55 с не произойдёт, то ШС возвращается в состояние «На охране». Из режима «Внимание» ШС может перейти в режим «Пожар», если в данном ШС сработает второй извещатель, а также по истечении временной задержки, задаваемой параметром «Задержка перехода в Тревогу/Пожар» . Если параметр «Задержка перехода в Тревогу/Пожар» «Задержка перехода в Тревогу/Пожар» , равное 255 с (максимально возможное значение), соответствует бесконечной временной задержке, и переход из режима «Внимание» в режим «Пожар» возможен только при срабатывании второго извещателя в ШС.

Тип 2. Пожарный комбинированный однопороговый .

В ШС включаются пожарные дымовые (нормально-разомкнутые) и тепловые (нормально-замкнутые) извещатели.

Возможные режимы (состояния) ШС:

  • «На охране» («Взят») – ШС контролируется, сопротивление в норме;
  • «Снят с охраны» («Снят») – ШС не контролируется;
  • «Внимание» – зафиксировано срабатывание теплового извещателя или повторное срабатывание дымового извещателя;
  • «Пожар» − после срабатывания извещателя истекла «Задержка перехода в Тревогу/Пожар» ;
  • «Короткое замыкание» − сопротивление ШС менее 100 Ом;
  • «Обрыв» − сопротивление ШС более 16 кОм (более 50 кОм для «С2000-4»);
  • «Невзятие» − ШС был нарушен в момент взятия на охрану.

При срабатывании теплового извещателя прибор переходит в режим «Внимание». При срабатывании дымового извещателя прибор формирует сообщение «Сработка датчика», делает перезапрос состояния ШС (см. тип 1). При подтверждённом срабатывании извещателя ШС переходит в режим «Внимание».

Из режима «Внимание» ШС может перейти в режим «Пожар» по истечении временной задержки, задаваемой параметром «Задержка перехода в Тревогу/Пожар» . Если параметр «Задержка перехода в Тревогу/Пожар» равен 0, то переход из режима «Внимание» в режим «Пожар» произойдёт мгновенно. Значение параметра «Задержка перехода в Тревогу/Пожар» , равное 255 с (максимально возможное значение), соответствует бесконечной временной задержке, и переход из режима «Внимание» в режим «Пожар» невозможен.

Тип 3. Пожарный тепловой двухпороговый .

В ШС включаются пожарные тепловые (нормально-замкнутые) извещатели.

Возможные режимы (состояния) ШС:

  • «На охране» («Взят») – ШС контролируется, сопротивление в норме;
  • «Снят с охраны» («Снят») – ШС не контролируется;
  • «Задержка взятия» – не закончилась задержка взятия на охрану;
  • «Внимание» – зафиксировано срабатывание одного извещателя;
  • «Пожар» − зафиксировано срабатывание более одного извещателя, либо после срабатывания одного извещателя истекла «Задержка перехода в Тревогу/Пожар» ;
  • «Короткое замыкание» − сопротивление ШС менее 2 кОм;
  • «Обрыв» − сопротивление ШС более 25 кОм (более 50 кОм для «С2000-4»);
  • «Невзятие» − ШС был нарушен в момент взятия на охрану.

При срабатывании извещателя прибор переходит в режим «Внимание» по данному ШС. Из режима «Внимание» прибор может перейти в режим «Пожар», если в ШС сработает второй извещатель, а также по истечении временной задержки, задаваемой параметром «Задержка перехода в Тревогу/Пожар». Если параметр «Задержка перехода в Тревогу/Пожар» равен 0, то переход из режима «Внимание» в режим «Пожар» произойдёт мгновенно. Значение параметра «Задержка перехода в Тревогу/Пожар», равное 255 с (максимально возможное значение), соответствует бесконечной временной задержке, и переход из режима «Внимание» в режим «Пожар» возможен только при срабатывании второго извещателя в данном ШС.

Для каждого шлейфа помимо типа можно настроить такие дополнительные параметры, как:

  • Задержка перехода в Тревогу/Пожар - для любого из пожарных шлейфов это время перехода из состояния «Внимание» в состояние «Пожар». Шлейфы типа 1 и типа 3 (с распознаванием двойной сработки) могут также перейти в состояние "Пожар" при срабатывании второго пожарного извещателя в ШС. Если "Задержка перехода в Тревогу/Пожар" равна 255 с, то прибор не переходит в режим "Пожар" по времени (бесконечная задержка). В этом случае шлейф типа 1 и 3 могут перейти в состояние "Пожар" только по сработке второго извещателя в шлейфе, а шлейф типа 2 не перейдёт в состояние "Пожар" ни при каких условиях.
  • Задержка анализа ШС после сброса питания - это длительность паузы перед анализом шлейфа после снятия напряжения питания шлейфа (при перезапросе состояния пожарного шлейфа и при взятии на охрану). Такая задержка позволяет включать в шлейф извещатели с большим временем готовности (временем "успокоения").
  • Без права снятия – не позволяет снять шлейф с охраны ни при каких условиях.
  • Автовзятие из Тревоги/Пожара – шлейф автоматически перейдёт в состояние «Взят», как только сопротивление шлейфа будет в норме в течение времени, равному численному значению этого параметра, умноженному на 15 с.

Максимальная длина шлейфов сигнализации ограничена только сопротивлением проводов (не более 100 Ом).

Каждый приёмно-контрольный прибор имеет релейные выходы. С помощью релейных выходов приборов можно управлять различными исполнительными устройствами – световыми и звуковыми оповещателями, а также осуществлять передачу извещений на ПЦН. Тактику работы любого релейного выхода можно запрограммировать, как и привязку срабатывания (от конкретного шлейфа или от группы шлейфов).

При организации системы пожарной сигнализации можно применять следующие алгоритмы работы реле:

  • Включить/выключить, если хотя бы один из связанных с реле шлейфов перешёл в состояние «Пожар»;
  • Включить/выключить на время, если хотя бы один из связанных с реле шлейфов перешёл в состояние «Пожар»;
  • Мигать из состояния включено/выключено, если хотя бы один из связанных с реле шлейфов перешёл в состояние «Пожар»;
  • «Лампа» – мигать, если хотя бы один из связанных с реле шлейфов перешёл в состояние «Пожар» (мигать с иной скважностью, если хотя бы один из связанных шлейфов перешёл в состояние «Внимание»); включить в случае взятия связанного шлейфа (шлейфов), выключить в случае снятия связанного шлейфа (шлейфов). При этом тревожные состояния более приоритетны.
  • «ПЦН» - включить при взятии хотя бы одного из связанных с реле шлейфов, во всех других случаях - выключить;
  • «АСПТ» - Включить на заданное время, если два или более шлейфов, связанных с реле, перешли в состояние «Пожар» и нет нарушения технологических ШС. Нарушенный технологический шлейф блокирует включение. Если технологический ШС был нарушен во время задержки управления реле, то при его восстановлении выход будет включен на заданное время (нарушение технологического шлейфа приостанавливает отсчёт задержки включения реле
  • «Сирена» - Если хотя бы один из связанных с реле шлейфов перешёл в состояние «Пожар», переключаться заданное время с одной скважностью, если в состояние внимание – с другой;
  • «Пожарный ПЦН» - если хотя бы один из связанных с реле шлейфов перешёл в состояние «Пожар» или «Внимание, то включить, иначе – выключить;
  • Выход «Неисправность» - если один из связанных с реле шлейфов в состоянии «Неисправность», «Невзятие», «Снят» или «Задержка взятия», то выключить, иначе включить;
  • Пожарная лампа - Если хотя бы один из связанных с реле шлейфов перешёл в состояние «Пожар», то мигать с одной скважностью, если во «Внимание», то мигать с другой скважность, если все связанные с реле шлейфы в состоянии «Взято», то включить, иначе выключить;
  • «Старая тактика ПЦН» - включить, если все связанные с реле шлейфы взяты или сняты (нет состояния «Пожара», «Неисправность», «Невзятия»), иначе – выключить;
  • Включить/выключить на заданное время перед взятием связанного с реле шлейфа (шлейфов);
  • Включить/выключить на заданное время при взятии связанного с реле шлейфа (шлейфов);
  • Включить/выключить на заданное время при невзятии связанного с реле шлейфа (шлейфов);
  • Включить/выключить при снятии связанного с реле шлейфа (шлейфов);
  • Включить/выключить при взятии связанного с реле шлейфа (шлейфов);
  • «АСПТ-1» - Включить на заданное время, если один из связанных с реле шлейфов перешёл в состояние "ПОЖАР" и нет нарушенных технологических шлейфов. Если технологический шлейфбыл нарушен во время задержки управления реле, то при его восстановлении выход будет включен на заданное время (нарушение технологического шлейфа приостанавливает отсчёт задержки включения реле);
  • «АСПТ-А» - Включить на заданное время, если два или более связанных с реле шлейф блокирует включение, при его восстановлении выход останется выключенным;
  • «АСПТ-А1» - Включить на заданное время, если хотя бы один из связанных с реле шлейфов перешёл в состояние "ПОЖАР" и нет нарушенных технологических шлейфов. Нарушенный технологический шлейф блокирует включение, при его восстановлении выход останется выключенным.

Приёмно-контрольные приборы ИСО «Орион» в автономном режиме

ППКОП С2000-4

Рисунок 1. Автономное использование прибора "С2000-4"

«С2000-4» в автономном режиме используется на небольших объектах. Например, прибор можно использовать в небольших магазинах, небольших офисах, квартирах и т.п.

Прибор имеет:

  1. Четыре шлейфа сигнализации, в которые можно включать любые типы неадресных пожарных извещателей. Все шлейфы являются свободно программируемыми, т.е. для любого шлейфа можно задать типы 1, 2 3, а также настроить индивидуально для каждого шлейфа и другие конфигурационные параметры.
  2. Два релейных выхода типа «сухой контакт» и два выхода с контролем исправности цепей подключения. К релейным выходам прибора можно подключать исполнительные устройства (световые и звуковые оповещатели), а также осуществлять с помощью реле передачу извещений на ПЦН. Во втором случае релейный выход объектового прибора включается в так называемый шлейф «общей тревоги» прибора передачи извещений, имеющий встроенный передатчик по GSM-каналу и/или выход для подключения к ГТС. Таким образом, при переходе прибора в режим «Пожар» реле замыкается, нарушается шлейф общей тревоги и происходит передача тревожного извещения на ПЦН по каналам GSM или по телефонной сети;
  3. Цепь для подключения считывателя (можно подключать различные считыватели, работающие по интерфейсу Touch Memory, Wiegand, Aba Track II).
  4. Четыре индикатора состояния шлейфов сигнализации, а также индикатор режима работы прибора.


ППКОП Сигнал-10

Рисунок 2. Автономное использование прибора "Сигнал-10"

«Сигнал-10» в автономном режиме используется на небольших и средних объектах.

У прибора имеется удобная функция управления состоянием зон посредством бесконтактных идентификаторов – ключей Touch Memory или Wiegand (до 85 паролей пользователей). Полномочия каждого ключа можно гибко настроить – разрешить полноценное управление одним или произвольной группой шлейфов, либо же разрешить только перевзятие шлейфов.Полномочия каждого ключа можно гибко настроить – разрешить полноценное управление одним или произвольной группой шлейфов, либо же разрешить только перевзятие шлейфов.

Прибор имеет:

1. Десять шлейфов сигнализации, в которые можно включать любые типы неадресных пожарных извещателей. Все шлейфы являются свободно программируемыми, т.е. для любого шлейфа можно задать типы 1, 2 и 3, а также настроить индивидуально для каждого шлейфа и другие конфигурационные параметры.

2. Два релейных выхода типа «сухой контакт» и два выхода с контролем исправности цепей подключения. К релейным выходам прибора можно подключать исполнительные устройства (световые и звуковые оповещатели), а также осуществлять с помощью реле передачу извещений на ПЦН. Во втором случае релейный выход объектового прибора включается в так называемый шлейф «общей тревоги» прибора передачи извещений, имеющий встроенный передатчик по GSM-каналу и/или выход для подключения к ГТС. Таким образом, при переходе прибора в режим «Пожар» реле замыкается, нарушается шлейф общей тревоги и происходит передача тревожного извещения на ПЦН по каналам GSM или по телефонной сети.

3. Цепь для подключения считывателя, с помощью которого реализуется удобный способ управления взятием и снятием с охраны с помощью электронных ключей или карточек. Подключать можно любые считыватели ключей Touch Memory или бесконтактных Proxy-карт, имеющие на выходе интерфейс Touch Memory (например, «Считыватель-2», «С2000-Proxy», «Proxy-2A», «Proxy-3A» и т.д.).

4. Десять индикаторов состояния шлейфов сигнализации и функциональный индикатор работы прибора.

ППКОП Сигнал-20М

«Сигнал-20М» может использоваться на малых и средних объектах (например, складские помещения, небольшие офисы, жилые дома и т.д.).

Для управления состоянием зон могут быть использованы PIN-коды (поддерживается 64 PIN-кода пользователя), Полномочия пользователей (каждого PIN-кода) можно гибко настроить – разрешить полноценное управление, или же разрешить только перевзятие на охрану. Любой пользователь может управлять произвольным количеством шлейфов, для каждого шлейфа полномочия взятия и снятия также можно индивидуально настроить.

Двадцать шлейфов сигнализации «Сигнала-20м» обеспечивают достаточную локализацию тревожного извещения на упомянутых объектах при сработке какого-либо охранного извещателя в шлейфе. Прибор имеет:

1. Двадцать шлейфов сигнализации, в которые можно включать любые виды неадресных пожарных извещателей. Все шлейфы являются свободно программируемыми, т.е.. для любого шлейфа можно задать типы 1, 2 и 3, а также настроить индивидуально для каждого шлейфа и другие конфигурационные параметры;

2. Три релейных выхода типа «сухой контакт» и два выхода с контролем исправности цепей подключения. К релейным выходам прибора можно подключать исполнительные устройства (световые и звуковые оповещатели), а также осуществлять с помощью реле передачу извещений на ПЦН. Во втором случае релейный объектового выход прибора включается в так называемый шлейф «общей тревоги» прибора передачи извещений, имеющий встроенный передатчик по GSM-каналу и/или выход для подключения к ГТС. Для реле определяется тактика работы, например, включить при тревоге. Таким образом, при переходе прибора в режим «Пожар» реле замыкается, нарушается шлейф общей тревоги и происходит передача тревожного извещения на ПЦН по каналам GSM или по телефонной сети;

3. Клавиатуру для управления с помощью PIN-кодов состоянием зон на корпусе прибора. Прибор поддерживает до 64 паролей пользователей, 1 пароль оператора, 1 пароль администратора. Пользователи могут иметь права либо на взятие и снятие шлейфов сигнализации, либо только на взятие, либо только на снятие. С помощью пароля оператора возможно перевести прибор в режим проверки, а с помощью пароля администратора вводить новые пароли пользователей и изменять или удалять старые.

4. Двадцать индикаторов состояния шлейфов сигнализации, пять индикаторов состояния выходов и функциональные индикаторы «Работа», «Пожар», «Неисправность», «Тревога».

Рисунок 3. Автономное использование "Сигнала-20М"

Неадресная пожарная сигнализация в ИСО ОРИОН

На рисунке 4 приведён пример организации неадресной системы пожарной сигнализации с использованием приборов ИСО «Орион». К каждому из приборов возможно подключить пороговые пожарные датчики различных типов (дымовые, тепловые, пламени, ручные). Шлейфы сигнализации каждого из приборов являются свободно программируемыми, т.е. для любого шлейфа можно задать типы 1, 2 и 3, а также настроить индивидуально для каждого шлейфа другие конфигурационные параметры. Каждый прибор имеет релейные выходы, с помощью которых можно управлять различными исполнительными устройствами – световыми и звуковыми оповещателями, а также передавать сигнал о тревоге на пульт централизованного наблюдения. Для этих же целей можно использовать контрольно-пусковой блок «С2000-КПБ». Дополнительно в системе установлен блок индикации «С2000-БИ», который предназначен для отображения состояния зон приборов на посту наблюдения. Управление состоянием зон, а также просмотр событий системы осуществляется с сетевого контроллера – пульта «С2000-М».Зачастую пульт также используется и для расширения системы пожарной сигнализации - для подключения дополнительных приёмно-контрольных приборов или релейных модулей. То есть, для увеличения производительности системы и её наращивания. Причём наращивание системы происходит без её структурных изменений, а лишь добавлением в неё новых устройств.

Рисунок 4. Неадресная система пожарной сигнализации

Адресно-пороговая система пожарной сигнализации с использованием приборов ИСО «Орион

Для построения адресно-пороговой пожарной сигнализации в ИСО «Орион» применяются:

Приёмно-контрольный прибор «Сигнал-10» с адресно-пороговым режимом шлейфов сигнализации

Дымовой оптико-электронный порогово-адресный извещатель «ДИП-34ПА»

Тепловой максимально-дифференциальный порогово-адресный извещатель «С2000-ИП-ПА»

Ручной порогово-адресный извещатель «ИПР 513-3ПА»

При подключении указанных извещателей к прибору «Сигнал-10» шлейфам прибора необходимо присвоить тип 14 – «Пожарный адресно-пороговый». В один адресно-пороговый шлейф может подключаться до 10 адресных извещателей, каждый из которых способен сообщать по запросу прибора своё текущее состояние. Прибор производит периодический опрос адресных извещателей, обеспечивая контроль их работоспособности и идентификации неисправного или тревожного извещателя. «Сигнал-10» воспринимает следующие типы извещений от адресных извещателей: «Норма», «Запылён, требуется обслуживание», «Неисправность», «Пожар», «Ручной пожар», «Тест», «Отключение». Каждый адресный извещатель рассматривается как дополнительная адресная зона прибора. При работе прибора совместно с сетевым контроллером каждую адресную зону можно снять с охраны и взять на охрану. При взятии на охрану или снятии с охраны порогово-адресного шлейфа автоматически снимаются или берутся те адресные зоны, которые принадлежат шлейфу. При этом адресные зоны, не имеющие привязки к шлейфу, при взятии или снятии порогово-адресного шлейфа не изменяют своего состояния.

При настройке прибора «Сигнал-10» существует возможность заранее указать адреса тех извещателей, которые будут включены в порогово-адресный шлейф. Для этого используется параметр «Начальная привязка ШС к адресам». Если отсутствует привязка адресной зоны извещателя к шлейфу, эта зона не участвует в формировании обобщённого состояния шлейфа, на неё не распространяются команды при взятии/снятии шлейфа.

Адресно-пороговый шлейф может находиться в следующих состояниях (состояния приведены в порядке приоритета):

  • «Пожар» - хотя бы одна адресная зона находится в состоянии «Ручной пожар», две или более адресных зоны находятся в состоянии «Пожар», либо истекла задержка перехода в тревогу/пожар;
  • «Внимание» - хотя бы одна адресная зона находится в состоянии «Пожар»;
  • «Неисправность» - одна из адресных зон находится в состоянии «Неисправность»;
  • «Отключен» - одна из адресных зон находится в состоянии «Отключен»;
  • «Невзятие» - в момент взятия на охрану адресная зона находится в состоянии, отличном от состояния «Норма»;
  • «Запылён, требуется обслуживание» - одна из адресных зон находится в состоянии «Запылён»;
  • «Снят с охраны» («Снят») – одна из адресных зон снята с охраны;
  • «На охране» («Взят») – все адресные зоны в норме и на охране.

Если в адресно-пороговом шлейфе зафиксировано состояние «Пожар» одной адресной зоны, шлейф переходит в состояние «Внимание». Если зафиксировано состояние «Ручной пожар» или «Пожар» у двух адресных зон, шлейф переходит в режим «Пожар». Переход из режима «Внимание» в режим «Пожар» возможен и по тайм-ауту, равному значению параметра «Задержка перехода в пожар» Если значение параметра «Задержка перехода в пожар» равно нулю, шлейф переходит в режим «Пожар» по срабатыванию одного автоматического адресного извещателя. Если значение «Задержка перехода в пожар» равно 255 (бесконечная задержка), шлейф переходит в режим «Пожар» только по срабатыванию двух автоматических адресных извещателей или одного ручного.

Если в течение 10 секунд прибор не получает ответа от извещателя, его адресной зоне присваивается состояние «Отключен». В этом случае отпадает необходимость использования разрыва шлейфа при изъятии извещателя из розетки, и сохраняется работоспособность всех остальных извещателей. Для порогово-адресного шлейфа не требуется оконечный резистор, и может использоваться произвольная топология шлейфа: шина, кольцо, звезда, а также любое их сочетание.

При организации адресно-пороговой системы охранной сигнализации для работы выходов можно применять тактики работы, аналогичные тактикам, использующимся в неадресной системе (см. выше). На рисунке 5 приведён пример организации адресно-пороговой системы пожарной сигнализации с использованием прибора «Сигнал-10».

Рисунок 5. Адресно-пороговая ПС с использованием "Сигнал-10"

Адресно-аналоговая система пожарной сигнализации с использованием приборов ИСО «Орион»

Адресно-аналоговая пожарная сигнализация в ИСО «Орион» строится с помощью следующих устройств:

  • Контроллер двухпроводной линии связи «С2000-КДЛ»;
  • Пожарный дымовой оптико-электронный адресно-аналоговый извещатель «ДИП-34А»;
  • Пожарный тепловой максимально-дифференциальный адресно-аналоговый «С2000-ИП»
  • Пожарный ручной адресный извещатель «ИПР 513-3А»
  • Блоки разветвительно-изолирующие «БРИЗ», «БРИЗ» исп. 01. Устройства предназначены для изолирования короткозамкнутых участков с последующим автоматическим восстановлением после снятия короткого замыкания. «БРИЗ» устанавливается в линию как отдельное устройство, «БРИЗ» исп. 01 встраивается в базу пожарных извещателей «С2000-ИП» и «ДИП-34А»
  • Адресные расширители «С2000-АР1», «С2000-АР2», «С2000-АР8». Устройства предназначены для подключения неадресных четырёхпроводных извещателей. Таким образом, к адресной системе можно подключить обычные пороговые извещатели.

Контроллер двухпроводной линии связи фактически имеет один шлейф сигнализации, к которому можно подключать до 127 адресных устройств. Адресными устройствами могут являться пожарные извещатели, адресные расширители или релейные модули. Каждое адресное устройство занимает один адрес в памяти контроллера. Адресные расширители занимают столько адресов в памяти контроллера, сколько шлейфов можно к ним подключить («С2000-АР1» - 1 адрес, «С2000-АР2» - 2 адреса, «С2000-АР8 – 8 адресов). Адресные релейные модули также занимают в памяти контроллера 2 адреса. Таким образом количество защищаемых помещений определяется адресной ёмкостью контроллера. Например, с одним «С2000-КДЛ» можно использовать 127 дымовых извещателей, либо 17 дымовых извещателей и 60 адресных релейных модулей. При срабатывании адресных извещателей или при нарушении шлейфов адресных расширителей контроллер выдаёт тревожное извещение по интерфейсу RS-485 на пульт управления «С2000М».

Для каждого адресного устройства в контроллере необходимо задать тип зоны. Тип зоны указывает контроллеру тактику работы зоны и класс включаемых в зону извещателей.

Тип 2 – "Пожарный комбинированный". В зону данного типа включаются адресные расширители с включенными в них пороговыми извещателями. . При этом у адресных расширителей будут распознаваться такие состояния, как "Норма", "Пожар", "Обрыв" и "Короткое замыкание".

Тип 3. Пожарный тепловой. В зону данного типа можно включать адресные пожарные ручные извещатели «ИПР-513-3А», а также адресные расширители с включенными в них пороговыми извещателями. Также в зону этого типа можно включить извещатель «С2000-ИП», однако при этом извещатель теряет свою аналоговые качества.

Возможные состояния зоны:

  • "Взято" – зона контролируется полностью;
  • "Снято" – зона в норме, если отсутствуют неисправности;
  • "Невзятие" – контролируемый параметр АУ был не в норме на момент взятия на охрану;
  • "Задержка взятия" – зона находится в состоянии задержки взятия на охрану;
  • "Пожар" – адресный тепловой извещатель зафиксировал изменение или превышение значения температуры, соответствующие условию перехода в режим "Пожар" (максимально-дифференциальный режим); адресный ручной извещатель переведён в состояние "Пожар" (разбитие стекла). Для шлейфов адресных расширителей существуют определённые значения сопротивления шлейфа, соответствующие этому состоянию;
  • "Короткое замыкание" – Для шлейфов адресных расширителей существуют определённые значения сопротивления шлейфа, соответствующие этому состоянию;
  • "Неисправность пожарного оборудования" – неисправен измерительный канал адресного теплового извещателя.

Тип 8. Дымовой адресно-аналоговый. В зону данного типа можно включать пожарные дымовые оптико-электронные адресно-аналоговые извещатели «ДИП-34А». Контроллер в дежурном режиме работы ДПЛС запрашивает числовые значения, соответствующие уровню концентрации дыма, измеряемой извещателем. Для каждой зоны задаются пороги предварительного оповещения «Внимание» и оповещения «Пожар» . Пороги срабатывания задаются отдельно для временных зон «НОЧЬ» и «ДЕНЬ» .

Периодически контроллер запрашивает значение запылённости дымовой камеры, полученное значение сравнивается с порогом «Запылён» , задаваемого отдельно для каждой зоны.

Возможные состояния зоны:

  • «Взято» – зона контролируется, пороги «Пожар», «Внимание» и «Запылён» не превышены;
  • «Снято» – контролируется только порог «Запылён» и неисправности;
  • «Неисправность пожарного оборудования» – неисправен измерительный канал адресного извещателя;
  • «Требуется обслуживание» – превышен внутренний порог автокомпенсации запылённости дымовой камеры адресного извещателя или порог «Запылён».

Тип 9. «Тепловой адресно-аналоговый» . В зону данного типа можно включать пожарные тепловые максимально-дифференциальные адресно-аналоговые извещатели «С2000-ИП». Контроллер в дежурном режиме работы ДПЛС запрашивает числовые значения, соответствующие температуре, измеряемой извещателем. Для каждой зоны задаются температурные пороги предварительного оповещения «Внимание» и оповещения «Пожар» .

Возможные состояния зоны:

  • «Взято» – зона контролируется, пороги «Пожар» и «Внимание» не превышены;
  • «Снято» – контролируются только неисправности;
  • «Задержка взятия» – зона находится в состоянии задержки взятия на охрану;
  • «Невзятие» – на момент взятия на охрану превышен один из порогов «Пожар», «Внимание» или «Запылён» либо присутствует неисправность;
  • «Внимание» – превышен порог «Внимание»;
  • «Пожар» – превышен порог «Пожар»;
  • «Неисправность пожарного оборудования» – неисправен измерительный канал адресного извещателя.

Для шлейфов можно настроить также и дополнительные параметры:

  • Автоперевзятие из тревоги - позволяет осуществлять автоматический переход из состояний «Тревога», «Пожар» и «Внимание» в состояние «Взято» при восстановлении нарушения зоны. При этом для перехода в состояние «Взято» зона должна находиться в норме в течение времени не меньше, чем задано параметром «Время восстановления».
  • Без права снятия – служит для возможности постоянно контроля зоны, то есть зону с таким параметром нельзя снять шлейф с охраны ни при каких условиях.

При организации адресно-аналоговой системы пожарной сигнализации в качестве релейных модулей можно применять устройства «С2000-СП2». Это адресные релейные модули, которые также подключаются к «С2000-КДЛ» по двухпроводной линии связи.

Для реле «С2000-СП2» можно применять тактики работы, аналогичные тактикам, использующимся в неадресной системе (см. выше).

Контроллер «С2000-КДЛ» также имеет цепь для подключения считывателей. Можно подключать различные считыватели, работающие по интерфейсу Touch Memory или Wiegand. Со считывателей возможно управлять состоянием зон контроллера. Помимо этого, на приборе имеются функциональные индикаторы состояния режима работы, линии ДПЛС и индикатор обмена по интерфейсу RS-485. На рисунке 6 приведён пример организации системы адресно-аналоговой пожарной сигнализации под управлением пульта «С2000М».

Рисунок 6. Адресно-аналоговая система пожарной сигнализации с использованием "С2000-КДЛ"


Взрывозащищённые решения на базе адресно-аналоговой системы пожарной сигнализации

При необходимости оборудования пожарной сигнализацией объекта, имеющего взрывоопасные зоны, совместно с адресно-аналоговой системой, построенной на основе контроллера «С2000-КДЛ» возможно использовать искробезопасные барьеры «БРШС-ex» (рисунок 7).

Рисунок 7. Взрывозащищённые решения на базе адресно-аналоговой системы ПС

Данный блок обеспечивает защиту на уровне искробезопасной электрической цепи. Этот способ защиты основан на принципе ограничения предельной энергии, накапливаемой или выделяемой электрической цепью в аварийном режиме, или рассеивания мощности до уровня значительно ниже минимальной энергии или температуры воспламенения. То есть ограничиваются значения напряжения и тока, которые могут попасть в опасную зону в случае возникновения неисправности. Искробезопасность блока обеспечивается гальванической развязкой и соответствующим выбором значений электрических зазоров и путей утечки между искробезопасными и связанными с ними искроопасными цепями, ограничением напряжения и тока до искробезопасных значений в выходных цепях за счет применения залитых компаундом барьеров искрозащиты на стабилитронах и токоограничивающих устройствах, обеспечением электрических зазоров, путей утечки и неповреждаемости элементов искрозащиты в том числе и за счет герметизации (заливки) их компаундом.

БРШС обеспечивает:

  • приём извещений от подключенных извещателей по двум искробезопасным шлейфам посредством контроля значений их сопротивлений;
  • электропитание внешних устройств от двух встроенных искробезопасных источников питания;
  • ретрансляцию тревожных извещений контроллеру двухпроводной линии связи.

Знак Х, стоящий после маркировки взрывозащиты, означает, что к присоединительным устройствам «БРШС-Ех» с маркировкой «искробезопасные цепи» допускается подключение только взрывозащищенного электрооборудования с видом взрывозащиты «искробезопасная электрическая цепь i», имеющего сертификат соответствия и разрешение на применение Федеральной службы по экологическому, технологическому и атомному надзору во взрывоопасных зонах. БРШС занимает два адреса в адресном пространстве контроллера «С2000-КДЛ».

К «БРШС-Ех» возможно подключать любые пороговые извещатели специального исполнения. На сегодняшний день компанией ЗАО НВП «Болид» поставляется ряд датчиков для установки внутри взрывоопасной зоны (взрывозащищённое исполнение):

  • Фотон-18 –охранный пассивный оптико-электронный извещатель;
  • Фотон-Ш-Ex – охранный инфракрасный пассивный оптико-электронный извещатель-«занавес»;
  • Стекло-Ех – охранный акустический извещатель;
  • Шорох-Ex –охранный поверхностный вибрационный извещатель;
  • МК-Ех – охранный магнитоконтактный извещатель;
  • СТЗ-Ех – сигнализатор затопления;
  • ИПД-Ех – дымовой оптико-электронный извещатель;
  • ИПДЛ-Ех - дымовой оптико-электронный линейный извещатель;
  • ИПП-Ех – инфракрасный извещатель пламени;
  • ИПР-Ех- ручной извещатель

Дополнительные возможности ПС при использовании программного обеспечения

В некоторых случаях при построении пожарной сигнализации используется персональный компьютер с предустановленным на нём специализированным программным обеспечением. Программное обеспечение может расширять функционал пульта «С2000М», а именно – использоваться для организации автоматизированного рабочего места диспетчерского поста, ведения журнала событий и тревог, указания причин тревог, для сбора статистики по адресным пожарным извещателям, а также для построения различных отчётов.

Для организации автоматизированных рабочих мест в ИСО «Орион» может использоваться следующее программное обеспечение: АРМ «С2000», АРМ «Орион ПРО».

АРМ «С2000» позволяет реализовать простейший функционал – мониторинг событий системы. Это ПО можно применять в случае необходимости мониторинга нескольких автономных приборов с поста наблюдения и протоколирования событий. При этом управление пожарной сигнализацией производится непосредственно с органов управления приборов («Сигнал-20М») или со считывателей («С2000-4», «Сигнал-10»).

ПК с АРМ «Орион ПРО» позволяют реализовать следующие функции:

Накопление событий ОС в базе данных (по сработкам ПС, реакциям оператора на эти сработки и т.п.);

Создание базы данных для охраняемого объекта – добавление в неё шлейфов, разделов, реле, расстановка их на планах помещений;

Создание прав доступа для управления объектами ПС (шлейфами, разделами), присваивание их дежурным операторам;

Размещение на графических планах помещений логических объектов ПС (шлейфов, областей разделов, реле)

Опрос и управление подключёнными к ПК приёмно-контрольными приборами, в том числе и пультами. То есть с компьютера можно одновременно опрашивать и управлять несколькими подсистемами, каждая из которых работает под управлением пульта;

Настройка автоматических реакций системы на различные события;

Отображение на графических планах помещений состояния охраняемого объекта, управление логическими объектами ПС (шлейфами, разделами);

Регистрация и обработка возникающих в системе пожарных тревог с указанием причин, служебных отметок, а также их архивирование;

Предоставление информации о состоянии объектов ПС в виде карточки объекта;

Формирование и выдача отчётов по различным событиям ПС;

Отображение камер охранного телевидения, а также управление состоянием этих камер.

Физически компьютер с программным обеспечением подключается к ИСО «Орион» через преобразователь интерфейсов по одному и вариантов, показанных на рисунке 8. Здесь же приведено количество рабочих мест, которые могут быть одновременно задействованы в системе (программные модули АРМ).

Рисунок 8. Подключение АРМ к приборам ИСО «Орион»

Закрепление задач автоматической пожарной сигнализации за программными модулями изображено на рисунке 9. Стоит отметить, что приборы ИСО «Орион» взаимодействуют с тем компьютером системы, на котором установлен программный модуль «Оперативная задача». Программные модули можно устанавливать на компьютеры как угодно - каждый модуль на отдельном компьютере, комбинация каких-либо модулей на компьютере, либо установка всех модулей на один компьютер.

Рисунок 9. Функционал модулей программного обеспечения

На нашем сайте вы можете увидеть программы для расчета пожарных рисков и категорий, а также иностранные программные комплексы в сфере пожарной безопасности.

Новая программа расчета пожарных рисков для тестирования и отзывов — Скачать с яндекс Диска

1) Калькулятор ОФП

Калькулятор сделан по упрощенной интегральной модели, только для одиночных помещений, высотой не более 6м.Им очень удобно предварительно оценить время блокировки.Например, для учебного класса получилось около 1.5мин, следовательно коридор заблокируется еще медленнее.
2) Калькулятор Эвакуации

3) Калькулятор Риска

Всего по двум-трем формулам которые быстро считаются, можно предварительно оценить значение пожарного риска.

Отредактировали программу расчета категорий
(исправили мелкие ошибки 20.02.15)
Программа для расчета категорий. Простая, удобная, все вещества во вкладке материалы, ничего не надо додумывать, только выбрать вид горючей нагрузки.
… любезно предоставлена господином Бондарь Андрей Николаевич, программа свободна в распространении и нет никаких ограничений. г. Надым Ямало-Ненецкого автономного округа.

Новая программы расчета массы газового огнетушащего вещества (хладон) + теория

программы выполнены в Маткаде и MS Excel

Программное средство для Оценки опасности Shell Shepherd, используются предприятиями нефтегазовой и нефтехимической промышленности, подрядчиками и страховыми компаниями во всем мире. Определяет риск и обеспечивает планирование на случай чрезвычайной ситуации в окружающей среде.
Скачать файл с яндекс диска — http://yadi.sk/d/2zCalRcNDcrQA

Тестирование расчетного модуля программы по определению времени блокировки

В данный момент организация FIRESOFTWARE занимается разработкой программного средства по расчету времени блокировки эвакуационных путей опасными факторами пожара с использованием двухзонной математической модели распространения ОФП по помещениям. Расчет проводится в соответствии с зависимостями, представленными в приложении 6 методики определения расчетных величин пожарного риска…, утвержденной приказом МЧС России №382 от 30.06.2009.
На данный момент закончен расчетный модуль программы, который был опубликован для свободного тестирования.

Программа GreenLine предназначена для расчета времени эвакуации людей при пожаре.

Описание программы:

В этом разделе представлена программа GreenLine , предназначенная для расчета времени эвакуации людей при пожаре. Программа GreenLine предоставляет пользователю возможность производить расчет времени эвакуации людей при пожаре в максимально короткий срок, что достигается следующими особенностями программы:

  • Определение расчетного времени эвакуации из здания в соответствии с методикой расчета, приведенной в ГОСТ 12.1.004-91* «Пожарная безопасность. Общие требования»;
  • Ввод исходных данных для расчета с помощью графического редактора с возможностью использовать в качестве подложки план здания;
  • Автоматический расчет длин участков на основе одного масштабного участка;
  • Формирование отчета, включающего исходные данные по каждому из участков а также подробный ход вычислений.

Программа GreenLine является сетевой, поэтому для осуществления расчета необходим доступ в интернет. Однако для создания схемы эвакуации, ввода данных и проверки их на правильность доступ к интернет не нужен. Вы можете скачать эту программу по следующей ссылке

Посмотреть сертификаты соответствия и купить программу Вы можете на сайте firesoftware.ru

Программа НПБ 107-97 создана для расчета пожарных категорий наружных установок. Она основана на нормах пожарной безопасности 107-97 «Определение категорий наружных установок по пожарной опасности»

Программы Всероссийского Научно-исследовательского Института Противопожарной Обороны представлены программой «Расчет времени эвакуации из зданий и сооружений», а также информационно-поисковой системой «Строительные материалы»

Иностранный программный комплекс «National Fire Code», созданный на основе стандартов американской корпорации NFPA, содержащий нормативные документы NFPA по 1997 год. Официальный сайт организации (на английском языке)

В электронной энциклопедии «Пожарная безопасность образовательного учреждения» представлены и разъяснены необходимые извлечения из законодательно – правовых и нормативно – технических документов, регламентирующих вопросы обеспечения пожарной безопасности различных видов современных образовательных учреждений РФ: дошкольных и общеобразовательных учреждений, ВУЗов и внешкольных учебных заведений (учебно – воспитательных и подготовительно – коррекционных учреждений, учебных корпусов школ – интернатов, музыкальных школ, художественных и артистических студий).

Программа для расчета категорий помещений В1-В4 , созданная в «Аудит Сервис Оптимум», основана на Приложении Б «Методы определения категорий помещений В1-В4» СП 12.13130.2009 «Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности». Мы просим всех, кто пользовался этой программой, высказать свое мнение и пожелание в отзывах!

поставщик программного обеспечения предлагает несколько источников информации, которые помогут работе в программе Fenix+ и работе над расчетами риска в целом.

1. Сайт на котором собрана крайне полезная информация по тематике расчета риска (в том числе тексты методики по расчету риска)
http://www.fireevacuation.ru/

2. Книга Харисова, Фирсова. Про обоснование нормативного значения пож. риска. (много интересной статистической информации)
https://dl.dropboxusercontent.com/u/4808465/book_haris.pdf

3. Обзорная лекция Самошина Д.А. по расчетам риска (один из разработчиков методики)
https://dl.dropboxusercontent.com/u/4808465/fire_risk_lecture_web_october_2010.pdf

4. Методическое руководство пользователя Fenix+ в котором рассмотрен пример выполнения проекта
http://mst.su/fenix/download/User_Task/index.htm

5. Руководство пользователя по программе
http://mst.su/fenix/download/User_Guide/index.htm

6. Видео канал на YouTube с некоторыми уроками, к сожалению данные уроки для старой версии программы, но для освежения информации они подойдут

https://www.youtube.com/user/mstvideostream

В современных системах автоматической пожарной защиты здания используются все самые передовые технологии пожаротушения, и новейшие аппаратно-программные средства пожарной сигнализации, оповещения людей о пожаре и управления инженерными системами пожарной автоматики.

Система комплексной безопасности современного объекта, оснащенного всеми видами пожарной защиты, сама имеет два уровня защиты: верхний и нижний.

К верхнему уровню пожарной защиты объекта относятся аппаратно-программные средства, поддерживаемые автоматизированным рабочим местом оператора АРМО.

Нижний уровень пожарной защиты объекта включает в себя аппаратно

программные средства автономно работающей системы активной противопожарной защиты САПЗ. В случае сбоя в работе АРМО система нижнего уровня защиты продолжает свою независимую работу.

Комплексная система активной противопожарной защиты (САПЗ) содержит следующие подсистемы:

  • автоматического обнаружения и извещения о пожаре и управления комплексной противодымной защитой;
  • оповещения и управления эвакуацией;
  • автоматического пожаротушения.

Система автоматического обнаружения и извещения о пожаре и управления комплексной противодымной защитой

В состав данной системы входят:

  • адресно-аналоговые станции пожарной сигнализации;
  • адресно-аналоговые дымовые, тепловые и другие пожарные извещатели;
  • адресные модули контроля и управления.

Данное оборудование позволяет использовать все преимущества современных систем пожарной защиты.

Система контроля и управления инженерными подсистемами пожарной автоматики строится на адресных модулях с возможностью управления инженерным оборудованием по общим шлейфам пожарной сигнализации. Это резко сокращает количество прокладываемых кабелей. Система автоматической пожарной защиты здания разбита на пожарные зоны, алгоритм работы которых тесно связан с алгоритмом работы инженерных систем соответствующей пожарной зоны. Наличие в пожарной зоне шлейфов от разных станций требует объединения станций в одну информационную сеть с общим программным полем и алгоритмом работы. С учетом комплекса противопожарной безопасности здания в помещениях и коридорах должны устанавливаться адресно-аналоговые дымовые пожарные извещатели с возможностью ежедневного контроля уровня их загрязненности через автоматизированное рабочее место оператора. Подобные действия предупредят ложное срабатывание пожарной системы, остановку работы инженерных систем и связанные с этим сбои в деловой работе учреждения, значительно упростят и облегчат обслуживание системы, сократят количество обслуживающего персонала. Контроль и проверка работоспособности оборудования пожарной автоматики из центрального диспетчерского поста через адресные блоки пожарной сигнализации требует оснащения системы противодымной защиты соответствующими электрическими приводами и датчиками контроля положения. Затраты на оборудование такой системы пожарной защиты здания окупаются при ее обслуживании.

Автоматизированная система пожарной сигнализации в случае пожара выдает в систему комплексной противодымной защиты следующие сигналы управления:

  • отключение приточно-вытяжной вентиляции и кондиционирования;
  • закрытие огнезадерживающих клапанов и заслонок;
  • включение системы дымоудаления;
  • открытие клапанов дымоудаления;
  • включение системы подпора воздуха в лестничные клетки и шахты лифтов;
  • открытие клапанов и заслонок системы подпора воздуха.

Существует перспективный интересный вариант интеграции систем пожарной безопасности в жилом секторе строительства.

Общая система пожарной сигнализации жилого дома делится на две автономно функционирующие системы: главную и ведомую.

Главная система пожарной сигнализации обеспечивает основную защиту здания, технических помещений, холлов, лестниц и осуществляет управление инженерным оборудованием пожарной автоматики здания, а ведомая - непосредственно защиту жилых помещений (квартир). Стыковка осуществляется через адресные блоки главной системы пожарной сигнализации и контакты выходных реле автономного блока ведомой системы. При этом появляется принцип. возможность оснастить отдельной квартиры пожарной сигнализацией полностью или демонтировать ее по желанию жильцов без нарушения алгоритма работы главной системы пожарной сигнализации здания и ее переналадки и перепрограммирования.

Система оповещения и управления эвакуацией

Современные средства оповещения о пожаре и управления эвакуацией делятся на два типа:

  • специализированные системы оповещения о пожаре;
  • системы оповещения о пожаре, совмещенные с радиофикацией объекта.

Во втором случае при возникновении пожара в автоматическом режиме происходит подключение шлейфов оповещения с динамиками к блоку системы оповещения о пожаре, минуя устройства регулировки громкости.

Управление системой оповещения о пожаре и эвакуации людей осуществляется через адресные блоки по алгоритму, заложенному в станцию пожарной сигнализации. есть разделение тревожных сообщений, посылаемых в пожарные зоны. Для уменьшения возникновения паники на объектах с большим скоплением людей в зону пожара подается сигнал "Пожар", а в другие зоны - сообщение, например, "По техническим причинам..." и т.д.

Существуют так же специализированные средства оповещения. Это системы телефонной и радиосвязи, которые тоже тесно связаны с алгоритмом работы системы пожарной сигнализации, хотя технически независимы. эта система строится на базе мини-АТС.

Центральный пульт управления мини-АТС - базовой элемент управления и контроля. Встроенный микроциклор позволяет производить программирование и настройку всевозможных функций, тестирование и диагностику неисправностей. Небольшое количество входных телефонных линий от районной АТС с помощью микроциклорной станции мини-АТС превращается в разветвленную сеть телефонных линий, обеспечивающих полноценную связь с районной АТС и м. собой. Микроциклорная система мини-АТС позволяет пользоваться всеми современными средствами связи: телетайпами, факсами, междугородной и международной телефонией. Кроме мини-АТС на объекте может быть установлена специализированная телефонная связь на базе пожарной АТС и пожарных телефонов в случае чрезвычайной ситуации. В диспетчерском пункте устанавливаются телефоны прямой связи (пожарные телефоны), входящие в структуру пожарной сигнализации, которые предназначаются для прямой связи с ЦУС УГПС города при возникновении пожара и ЧС. Для связи с вневедомственной охраной автоматических охранных систем предусмотрен также отдельный городской телефонный вход. Дополнительно на объекте, в случае чрезвычайной ситуации, предусматривается специализированная радиосвязь с УГПС города.

Система автоматического пожаротушения

Системы управления пожаротушением могут быть как автономные, так и встроенные - интегрированные в систему пожарной сигнализации. С точки зрения надежности работы автономные установки пожаротушения с выносными табло индикации в центральном диспечерском посту будут работать даже в случае сбоя в работе базовой системы пожарной сигнализации.

В систему управления пожаротушением входят автоматизированные установки водяного, пенного, газового, порошкового, аэрозольного и мелкодисперсного пожаротушения. Принцип построения установок определяет выбор оборудования.

изучим наиболее распространенные системы автоматического газового пожаротушения. При выборе оптимального варианта управления автоматическими установками газового пожаротушения, руководствуются техническими требованиями, особенностями и функциональными возможностями защищаемых объектов. Мы не будем заниматься анализом выбора огнетушащих веществ, значит технологической частью установок газового пожаротушения. Отметим только, что в зависимости от объемов огнетушащего вещества выделяются установки модульного газового пожаротушения на одно направление и огнегасительные станции ОГС на несколько направлений. На на данный моментшний день применяются три основные типовые схемы построения систем управления установками газового пожаротушения:

  • автономная система управления газовым пожаротушением с выносным табло индикации в ЦДП;
  • децентрализованная система управления газовым пожаротушением;
  • централизованная система газового пожаротушения.

Децентрализованная и централизованная системы управления газовым пожаротушением строятся на базе автономных автоматизированных установок газового пожаротушения с выводом информации о своей работе через адресные блоки базовой системы пожарной сигнализации. Централизованная система управления газовым пожаротушением кроме адресных блоков для вывода информации о работе автономной системы запуска и оповещения использует адресно-аналоговые пожарные извещатели базовой системы пожарной сигнализации для автоматического запуска пожаротушения.

Одной из особенностей работы систем АГПТ в автоматическом режиме является использование адресно-аналоговых и пороговых пожарных извещателей в качестве приборов, регистрирующих пожар, по сигналу которых производится выпуск огнетушащего вещества. Адресно-аналоговые датчики дыма и тепла, контролирующие защищаемое помещение, постоянно опрашиваются станцией управления пожаротушением. Прибор постоянно отслеживает рабочее состояние датчиков и их чувствительность (в случае снижения чувствительности датчика станция автоматически компенсирует ее путем установки соответствующего порога). А вот при использовании безадресных систем система не определяет поломку датчика или потерю его чувствительности. Считается, что система находится в рабочем состоянии, но в действительности станция управления пожаротушением в случае реального возгорания не сработает должным образом. Поэтому при установке систем автоматического газового пожаротушения предпочтительно использовать именно адресно-аналоговые системы. Их относительно высокая стоимость компенсируется безусловной надежностью, снижением риска возникновения возгорания и ложных срабатываний с выпуском огнетушащего вещества на защищаемом объекте.

Современные системы пожарной сигнализации, построенные на современном оборудовании, включающие в себя гибкую логику, свободное программирование и мощную циклорную память, являются центром интеграции управления и контроля за всеми инженерными системами пожарной автоматики. Рабочий алгоритм, прописанный в такой системе, - единый центр управления всей периферией. Отсутствие промежуточных релейных шкафов с жесткой логикой, резкое уменьшение количества кабельной разводки, высокая надежность оборудования, гибкая логика в программировании, принцип. возможность внесения изменений без технических сложностей, легкость обслуживания и принцип. возможность уменьшения количества обслуживающего персонала за счет автоматизации контроля, несмотря на затраты, указывает, что будущее - за интеграцией всех систем пожарной защиты под эгидой автоматической системы пожарной сигнализации. Построение интегрированной системы автоматической пожарной защиты здания требует высокой надежности работы не только пожарного оборудования, но и линий цифровой связи.

Полезная модель относится к устройствам автоматики, а точнее к автоматизированным системам противопожарной защиты, обеспечивающим решение задач пожарной безопасности объектов.

Задачей настоящей полезной модели является повышение эффективности функционирования автоматизированной системы противопожарной защиты.

Техническим результатом, достигаемым при осуществлении заявляемой полезной модели, является повышение эффективности функционирования системы за счет применения автоматических пожарных извещателей пламени, аппаратно и программно сопряженных с видеокамерами, зоны обнаружения и обзора которых, соответственно, совпадают.В систему введены также в составе модуля автономного пожаротушения локальные автономные средства пожаротушения, информационно связанные с контроллером для передачи сообщений о своем срабатывании.

Из уровня техники известны автоматизированные системы противопожарной защиты (АСПЗ), представляющие собой комплекс технических средств, предназначенный для защиты людей и имущества от воздействия опасных факторов пожара и (или) ограничение последствий воздействия опасных факторов пожара на объект .

Известна, например, система "Орион" . Система содержит модули охранно-пожарной сигнализации, видеонаблюдения и контроля доступа, управления пожаротушением и инженерными системами здания, преобразователи интерфейсов и автоматизированное рабочее место оператора.

Недостаток такой системы - невысокая достоверность функционирования в условиях промышленного объекта с большим уровнем помех. Ложные срабатывания приводят к запуску установок пожаротушения, эвакуации людей, что приводит к материальным потерям не только из-за расхода огнетушащего вещества, но и за счет остановки производства, затрат на ликвидацию последствий срабатывания установок пожаротушения.

Для повышения достоверности АСПЗ на современном уровне техники вводят дублирование пожарных извещателей, повторный запрос информации от средств обнаружения пожара, визуальную проверку наличия пожара службами охраны, что существенно увеличивает время реагирования и, следовательно, эффективность функционирования АСПЗ.

Для снижения времени анализа и принятия решения, т е. повышения эффективности АСПЗ используют визуальный контроль состояния объекта путем интеграции средств обнаружения пожара с системой видеонаблюдения. Современные системы видеонаблюдения в составе АСПЗ могут быть снабжены также программными модулями распознавания ситуаций, в частности, признаков аварии и пожара, а также блоками для тренировки и контроля оператора.

Такой АСПЗ, наиболее близкой к заявляемой, является система .

Блок-схема устройства-прототипа изображена на фиг.1.

Система содержит модуль цифрового видеонаблюдения 1, блок информационных и исполнительных элементов 2, контроллер 3, автоматизированное рабочее место оператора 4, блок анализа команд 5, блок контроля действий оператора 6, блок управления 7, блок памяти видеосюжетов 8, блок информационных и исполнительных элементов 2 включает модуль охранной сигнализации 9, модуль пожарной сигнализации 10, модуль контроля и управления доступом 11, модуль водяного пожаротушения 12, модуль оповещения людей о пожаре и управления эвакуацией 13, автоматизированное рабочее место оператора включает компьютер-сервер 14 с подключенными к нему мониторами 15.

Модуль цифрового видеонаблюдения 1 подключен с помощью первого канала передачи данных к контроллеру 3, блок информационных и исполнительных элементов 2 подключен с помощью второго канала передачи данных к контроллеру 3, автоматизированное рабочее место оператора 4 подключено с помощью третьего канала передачи данных к контроллеру 3, блок анализа 5 команд подключен с помощью четвертого канала передачи данных к контроллеру 3, первый выход блока управления 7 подключен к входу блока памяти видеосюжетов 8, второй выход блока управления 7 подключен к первому входу блока анализа команд 5, выход блока контроля действий оператора 6 подключен ко второму входу блока анализа 5 команд, блок анализа 5 команд и блок памяти видеосюжетов 8 с помощью пятого канала передачи данных подключены к рабочему месту оператора 4.

Недостатком прототипа является трудность практической реализации сопряжения обзора видеокамер и зон обнаружения пожарных извещателей. Кроме того, время визуального анализа ситуации может быть значительным и недостаточно эффективным для ряда технологических объектов, например, шкафов с вычислительной техникой и устройств управления. Пожар на таких объектах из-за несвоевременного обнаружения может привести к значительным материальным и иным потерям.

Задачей настоящей полезной модели является повышение эффективности автоматизированной системы противопожарной защиты.

Техническим результатом, достигаемым при осуществлении заявляемой полезной модели, является повышение эффективности функционирования системы за счет введения автоматических пожарных извещателей пламени, аппаратно и программно сопряженных с видеокамерами, зоны обнаружения и обзора которых, соответственно, совпадают. В систему введены также в составе модуля автономного пожаротушения локальные автономные средства пожаротушения, информационно связанные с контроллером для передачи сообщений о своем срабатывании.

Указанная техническая задача решена за счет того, что в известное устройство-прототип , содержащее модуль цифрового видеонаблюдения, контроллер, автоматизированное рабочее место оператора, модуль оповещения людей о пожаре и управления эвакуацией, модуль водяного пожаротушения, соединенные между собой общим каналом приема-передачи данных, блок контроля и управления, модуль пожарной сигнализации, выход которого подключен к первому входу контроллера, с целью повышении эффективности функционирования введены пожарные извещатели пламени со встроенной видеокамерой, выход которых подключен ко второму входу контроллера, модуль питания и управления, модуль автономного пожаротушения, выход которого подключен к третьему входу контроллера, выход блока контроля и управления подключен к четвертому входу контроллера, первый и второй выходы контроллера подключены к соответствующим входам модуля питания и управления, первый и второй выходы которого подключены к соответствующим первому и второму входам модуля водяного пожаротушения.

Модуль пожарной сигнализации содержит пожарные извещатели, выход которых подключен к прибору приемно-контрольному пожарному, выход которого является выходом модуля пожарной сигнализации.

Модуль водяного пожаротушения содержит установку пенотушения, установку орошения, блок управления подачей воды к лафетным стволам, блок управления водяной завесой, насосную станцию пожаротушения, выход которой подключен к первым входам установки пенотушения, установки орошения, блока управления подачей воды к лафетным стволам, блока управления водяной завесой, объединенные вторые входы установки орошения, блока управления подачей воды к лафетным стволам, блока управления водяной завесой являются вторым входом модуля водяного пожаротушения, второй вход установки пенотушения является первым входом модуля водяного пожаротушения, вход насосной станции пожаротушения является входом модуля водяного пожаротушения, подключенным к общему каналу приема-передачи данных.

Модуль питания и управления содержит блок управления пенотушением и блок управления водяным пожаротушением, входы которых являются соответственно первым и вторым входами модуля питания и управления, а выходы этих блоков - соответственно первым и вторым выходами модуля питания и управления.

На фиг.2 изображена блок-схема заявляемой автоматизированной системы противопожарной защиты.

Система содержит модуль цифрового видеонаблюдения 1, блок контроля и управления 2, модуль пожарной сигнализации 3, пожарные извещатели пламени 4 со встроенной видеокамерой, контроллер 5, модуль питания и управления 6, автоматизированное рабочее место оператора 7, модуль автономного пожаротушения 8, модуль водяного пожаротушения 9, модуль оповещения людей о пожаре и управления эвакуацией 10.

Модуль пожарной сигнализации 3 содержит прибор приемно-контрольный 11 и пожарные извещатели 12. Модуль питания и управления 6 содержит блок управления пенотушением 13 и блок управления водяным пожаротушением 14. Модуль водяного пожаротушения 9 содержит установку пенотушения 15, установку орошения 16, блок управления подачей воды к лафетным стволам 17, блок управления водяной завесой 18 и насосную станцию пожаротушения 19.

Модуль цифрового видеонаблюдения 1, контроллер 5, автоматизированное рабочее место оператора 7, модуль оповещения людей о пожаре и управления эвакуацией 10, модуль водяного пожаротушения 9 соединены между собой общим каналом приема-передачи информации, выход модуля пожарной сигнализации 2 подключен к первому входу контроллера 5, выход пожарных извещателей пламени 4 со встроенной видеокамерой подключен ко второму входу контроллера 5, выход модуля автономного пожаротушения 8 подключен к третьему входу контроллера 5, выход блока контроля и управления 2 подключен к четвертому входу контроллера 5, первый и второй выходы контроллера 5 подключены к соответствующим первому и второму входам модуля питания и управления 6, первый и второй выходы которого подключены к соответствующим первому и второму входам модуля водяного пожаротушения 9.

В модуле пожарной сигнализации 3 пожарные извещатели 12 подключены к прибору приемно-контрольному 11, выход которого является выходом модуля пожарной сигнализации 3.

В модуле питания и управления 6 входы блока управления пенотушением 13 и блока управления водяным пожаротушением 14 являются соответственно первым и вторым входами модуля питания и управления 6, а выходы этих блоков - соответственно первым и вторым выходами модуля питания и управления 6.

В модуле водяного пожаротушения 9 выход насосной станции пожаротушения 19 подключен к первым входам установки пенотушения 15, установки орошения 16, блока управления подачей воды к лафетным стволам 17, блока управления водяной завесой 18, объединенные вторые входы установки орошения 16, блока управления подачей воды к лафетным стволам 17, блока управления водяной завесой 18 являются вторым входом модуля водяного пожаротушения 9, второй вход установки пенотушения 15 является первым входом модуля водяного пожаротушения 9, вход насосной станции пожаротушения 19 является входом модуля водяного пожаротушения 9, подключенным к общему каналу приема-передачи данных.

Для достижения технического результата при осуществлении полезной модели могут быть использованы следующие варианты технической реализации отдельных блоков.

Модуль цифрового видеонаблюдения 1, модуль контроля и управления 2, модуль пожарной сигнализации 3, контроллер 5, автоматизированное рабочее место оператора 7, модуль оповещения людей о пожаре и управления эвакуацией 10 могут быть выполнены с использованием известных технических решений идентично системе - прототипу .

Модуль питания и управления 6, модуль водяного пожаротушения 9 могут быть выполнены из типовых серийно выпускаемых блоков, назначение и работа которых описана в .

Пожарные извещатели 4 со встроенной видеокамерой представляет собой серийно выпускаемые устройства, например двухдиапазонный извещатель пожарный пламени ИП 329/330 "СИНКРОСС" функциями видеоконтроля .

Модуль 8 автономного пожаротушения представляет собой комплекс автономных установок локального, например, газового пожаротушения, формирующих выходной электрический сигнал о срабатывании. В качестве таких установок могут быть использованы, например АУП 01-Ф, серийно выпускаемые ОАО "Приборный завод "Тензор" .

Применяемый для связи между модулями канал приема-передачи данных может использовать стандартный протокол обмена данными, например RS485.

Система работает следующим образом:

В нормальных условиях на мониторах автоматизированного рабочего места оператора 5 по данным пожарных извещателей 4, 12 отображается состояние объекта, основные режимы работы модулей, а также изображения участков объекта в зоне действия видеокамер модуля цифрового видеонаблюдения 1.

При появлении на объекте признаков пожара, они обнаруживаются соответствующими извещателями модуля 3 пожарной сигнализации, извещателями пламени 4 со встроенной видеокамерой, и информация о пожаре с помощью котроллера 5 отображается в виде светового сигнала на панели блока контроля и управления 2 и в виде изображения - на мониторе автоматизированного рабочего места оператора 7. Оператор имеет возможность проверить правильность сформированного извещения о пожаре извещателем пламени 4 в результате покадрового просмотра истории ситуации, повлекшей его срабатывание. Эта функция в извещателе 4 реализована без применения дополнительных линий для передачи видеоданных. В случае подтверждения факта возникновения пожара оператор формирует команды управления на включение средств пожаротушения модуля водяного пожаротушения 9 с помощью блока питании и управления 6. Кроме этого, формируются команды на включения модуля 10 оповещения людей о пожаре и управления эвакуацией. Таким образом, значительно сокращается время реагирования на пожароопасную ситуацию, возникающую на объекте.

Аналогичная команда может быть сформирована с помощью блока контроля и управления 2, находящегося непосредственно на технологическом объекте. Контроллер 5, блоки управления пенотушением 13 и водяным пожаротушением 14, содержащие силовое электрооборудование, как правило, расположены в специальном помещении в металлических шкафах. Для обеспечения пожарной безопасности в них используются автономные средства локального газового пожаротушения, входящие в состав модуля 8 автономного пожаротушения. В случае возникновения пожара в шкафах автоматики и управления средства локального газового пожаротушения включаются автоматически, при этом через контроллер 5 информация о их срабатывании поступает оператору для принятия им дополнительных мер по ликвидации пожара. Для сформированного таким образом модуля 8 пожаротушения обеспечивается полностью автономная работа и одновременная интеграция его в автоматизированную систему противопожарной защиты. При этом в случае его срабатывания практически отсутствуют выбросы, вредные для людей и оборудования.

Таким образом, предлагаемая автоматизированная система полностью решает задачи пожарной безопасности промышленного объекта. При этом обеспечивается повышенная эффективность ее функционирования за счет уменьшения времени реагирования на пожароопасную ситуацию, как на технологическом объекте, так и в самом техническом оборудовании системы противопожарной защиты.

ИСТОЧНИКИ ИНФОРМАЦИИ:

1. Закон Российской Федерации от 22 июля 2008 г. 123-ФЗ "Технический регламент о требованиях пожарной безопасности".

2. Кирюхина Т.Г., Членов А.Н. Технические средства безопасности. Часть 1. Охранная и охранно-пожарная сигнализация. Системы видеоконтроля. Интегрированные системы. Системы контроля и управления доступом - М.: НОУ "Такир", 2002 - 215 с.

3. Патент РФ на полезную модель 105052 МПК G0B 13/00. - 2011104664/08; заявл. 10.02.2011; опубл. 27.05.2011. Бюл. 15. - 2 с.: ил.

4. Бабуров В.П., Бабурин В.В., Фомин В.И., Смирнов В.И. Производственная и пожарная автоматика. Ч. 2. Автоматические установки пожаротушения: Учебник. - М.: Академия ГПС МЧС России, 2007. - 283 с.

5. Пожарный извещатель пламени ИП 329/330 "СИНКРОСС" http://www.sinkross.rn/static/ip329.html.

6. Автономная установка газового пожаротушения АУП 01-Ф http://www/tenzor.net.

1. Автоматизированная система противопожарной защиты, содержащая модуль цифрового видеонаблюдения, контроллер, автоматизированное рабочее место оператора, модуль оповещения людей о пожаре и управления эвакуацией, модуль водяного пожаротушения, соединенные между собой общим каналом приема-передачи данных, блок контроля и управления, модуль пожарной сигнализации, выход которого подключен к первому входу контроллера, отличающаяся тем, что в нее введены пожарные извещатели пламени со встроенной видеокамерой, выход которых подключен ко второму входу контроллера, модуль питания и управления, модуль автономного пожаротушения, выход которого подключен к третьему входу контроллера, выход блока контроля и управления подключен к четвертому входу контроллера, первый и второй выходы контроллера подключены к соответствующим входам модуля питания и управления, первый и второй выходы которого подключены к соответствующим первому и второму входам модуля водяного пожаротушения.



Новое на сайте

>

Самое популярное