Домой Интерьер квартиры Вычисляем площадь квадрата: по стороне, диагонале, периметру. Что такое площадь квадрата? Что такое площадь прямоугольника

Вычисляем площадь квадрата: по стороне, диагонале, периметру. Что такое площадь квадрата? Что такое площадь прямоугольника

Квадрат – это правильный четырехугольник, в котором все углы и стороны равны между собой.

Довольно часто эту фигуру рассматривают, как частный случай или . Диагонали квадрата равны между собой и используются в формуле площади квадрата через диагональ.
Для расчета площади рассмотрим формулу площади квадрата через диагонали:

То есть площадь квадрата равна квадрату длины диагонали поделенному на два. Учитывая, что стороны фигуры равны, можно рассчитать длину диагонали из формулы площади прямоугольного треугольника или по теореме Пифагора.

Рассмотрим пример расчета площади квадрата через диагональ. Пусть дан квадрат с диагональю d = 3 см. Необходимо вычислить его площадь:

По этому примеру расчета площади квадрата через диагонали мы получили результат 4,5 .

Площадь квадрата через сторону

Найти площадь правильного четырехугольника можно и по его стороне. Формула площади квадрата очень проста:

Так как в предыдущем примере расчета площади квадрата мы рассчитали значение по диаметру, теперь попробуем найти длину стороны:
Подставим значение в выражение:
Длина стороны квадрата будет равна 2,1 cm.

Очень просто можно использовать формулу площади квадрата вписанного в окружность.

Диаметр описанной окружности будет равен диаметру квадрата. Так как квадрат считается правильным ромбом, можно использовать формулу расчета площади ромба. Она равна половине произведения его диагоналей. Диагонали квадрата равны, значит формула будет выглядеть так:
Рассмотрим пример расчета площади квадрата вписанного в окружность.

Дан квадрат, вписанный в окружность. Диагональ окружности равна d = 6 см. Найдите площадь квадрата.
Мы помним, что диагональ окружности равна диагонали квадрата. Подставляем значение в формулу расчета площади квадрата через его диагонали:

Площадь квадрата равна 18

Площадь квадрата через периметр

В некоторых задачах по условиям дается периметр квадрата и требуется расчет его площади. Формула площади квадрата через периметр выводится из значения периметра. Периметр – это сумма длин всех сторон фигуры. Т.к. в квадрате 4 равных стороны, то он будет равенОтсюда находим сторону фигуры Площадь квадрата по обычной формуле считается так: .
Рассмотрим пример расчета площади квадрата через периметр.

Площадь квадрата – базовое понятие, благодаря которому можно без проблем рассчитать расход материалов для ремонта, высчитать верные габариты мебели при замерах помещения, понять, сколько нужно удобрения и семян для высадки важных культур на огромном поле.

Приведенными формулами площади квадрата пользуются и строители, и мебельные производители, и представители сельского хозяйства.

Что такое квадрат?

Квадрат – правильный прямоугольник с равными сторонами. Каждый угол фигуры равен 90⁰. Квадрат относится к простым геометрическим фигурам, расположенным на плоскости. Найти площадь квадрата можно несколькими способами вычислений: по диагонали, по стороне, по периметру.

Формулы площади, примеры расчетов

Площадь простой фигуры – положительная величина, обладающая перечисленными ниже свойствами:

  • Равные геометрические фигуры обладают равными площадями.
  • В случае, если простая фигура разделена на несколько частей, ее общая площадь будет всегда равна сумме площадей всех элементов.
  • Площадь квадрата всегда равна единице, если его сторона соответствует единице измерения.

По стороне

В геометрии площадь всегда обозначается как S, а маленькие латинские буквы (например, а и b) – это стороны простой фигуры.

В основе вычисления площади любого прямоугольника по стороне лежит простая формула: S = ab , но в случае с квадратом формулу преобразовывают в S = а² , так как две стороны одинаковы по длине.

Отсюда следует утверждение, что площадь квадрата равна квадрату его стороны.

Пример 1: Дан квадрат, сторона которого равна 5 см. Чему равна площадь?
Решение: S = 5² = 25 см

Пример 2: Сторона фигуры 3 см. Найдите площадь.
Решение: S = 3² = 9 см

По диагонали

Еще один вариант найти площадь – это произвести вычисления относительно диагонали фигуры (d). Правда, для этого нужно сперва найти длину самой диагонали. Известно, что диагональ делит квадрат на два равнобедренных треугольника. А значит, вычисления можно провести по известной теореме Пифагора, где катетами будут выступать стороны квадрата, а гипотенузой – собственно диагональ.

Расчет площади по диагонали производится по принципу: площадь квадрата равна квадрату длины диагонали (вычисленной по теореме Пифагора) и поделенному на два.

Пример: Дан квадрат, диагональ которого составляет 10 см. Как вычислить площадь?
Решение: Согласно формуле, приведенной выше, вычисления производятся так: S = 10²/2 = 100/2 = 50 cм²

По периметру

Периметр – сумма всех длин сторон квадрата. Обозначается периметр латинской буквой Р. Беря во внимание определение квадрата, получаем универсальную формулу расчета периметра для равностороннего четырехугольника: Р = 4а . То есть, периметр квадрата равен длине стороны, помноженной на четыре.

Вычисления площади квадрата относительно суммы всех сторон необходимо в том случае, если в задаче задано только значение периметра. Зная формулу вычисления периметра, очень легко найти площадь.

Если Р = 4а , то а = Р/4 . Далее уже нужно использовать формулу расчета площади по стороне.

Пример: Пусть будет дан квадрат с периметром 100 мм. Какова площадь?
Решение: Сторона квадрата будет равна 100/4 = 25 мм. Ну, а площадь квадрата дальше вычисляется по формуле, где площадь квадрата равна квадрату сторон. То есть, S = 25² = 625 мм²

Площадь квадрата вписанного в окружность

Этот вариант используется как следствие формулы, полученной ранее (расчет по диагонали). Согласно математическим данным, диаметр круга как раз и будет равен диагонали квадрата. Поэтому, чтобы оперативно рассчитать площадь равностороннего четырехугольника, достаточно будет знать диаметр круга. А далее используется уже известная формула: S = d²/2

Типовая задача: например, дана окружность с диагональю 8 см и в нее вписан квадрат. Какая площадь четырехугольника?
Правильное решение: S = 8²/2 = 64/2 = 32 cм²

Видео урок

Читайте статью, чтобы знать, как находить площадь квадрата разными способами.

Квадрат — это равносторонний прямоугольник. У данного правильного и плоского четырехугольника равенство во всех сторонах, углах и диагоналях. Из-за того что существует такое равенство, формула для вычисления площади и других характеристик, немного видоизменяется по сравнению с иными математическими фигурами. Но это не делает задачи слишком сложными. Давайте разберем все формулы и решения задач в этой статье.

Площадь S прямого и квадратного угольников вычисляется по формуле: a умножить на b . Но так как у квадрата полное равенство сторон, то его площадь будет равна: S=(a) во второй степени . Как узнать величину стороны квадрата, зная его площадь?

  • Если известна площадь квадратного угольника, то сторону находим путем исчисления площади из-под квадратного корня.
  • К примеру, площадь угольника равна 49, то чему равняется сторона?
  • 49=(а) во второй степени . Решение: а=корень из 49=7. Ответ: 7 .

Если нужно найти сторону квадратного угольника, площадь которого состоит слишком длинного числа, тогда воспользуйтесь калькулятором. Наберите сначала число площади, а потом нажмите знак корня на клавиатуре калькулятора. Получившееся число и будет ответом.



В этом примере будем использовать теорему Пифагора. У квадрата все стороны равны, а диагональ d мы будем рассматривать как гипотенузу прямоугольного равнобедренного треугольника с катетом а . Теперь находим диагональ квадрата, если известна его площадь:

  • Чтобы не расписывать всю теорему Пифагора будем решать по второму варианту: d=a√2, где а — это сторона квадрата.
  • Итак, нам известна площадь квадрата, например, она равна 64. Значит одна сторона а=√64=8.
  • Получается d=8√2 . Корень из 2 не получается целым числом, поэтому в ответе можно написать именно так: d=8√2 . Но, если хочется вычислить значение, тогда воспользуйтесь калькулятором: √2= 1,41421356237 и умножьте на 8, получается 11, 3137084 .

Важно: Обычно в математике не оставляют в ответе цифры с большим количеством чисел после запятой. Нужно округлять или оставить с корнем. Поэтому ответ на нахождение диагонали, если площадь равна 64 будет таким: d=8√2 .

Формула нахождения площади квадрата через диагональ простая:



Теперь напишем решение по нахождению площади квадрата через диагональ:

  • Диагональ d=8.
  • 8 в квадрате равняется 64.
  • 64 разделить на 2 равно 32.
  • Площадь квадрата равна 32.

Совет: У этой задачи есть еще одно решение через теорему Пифагора, но оно более сложное. Поэтому используйте решение, которое мы рассмотрели.



Периметр квадратного угольника P — это сумма всех сторон. Чтобы найти его площадь, зная его периметр, нужно сначала вычислить сторону квадратного угольника. Решение:

  • Допустим периметр равен 24. Делим 24 на 4 стороны, получается 6 — это одна сторона.
  • Теперь используем формулу нахождения площади, зная чему равна сторона квадратного угольника: S=а в квадрате, S=6 в квадрате=36 .
  • Ответ: 36

Как видите, зная периметр квадрата, просто найти его площадь.



Радиус R — это половина диагонали квадрата, вписанного в окружность. Теперь можем найти диагональ по формуле: d=2*R . Далее находим площадь квадрата вписанного в окружность с заданным радиусом:

  • Диагональ равна 2 умножить на радиус. Например радиус равен 5, тогда диагональ равна 2*5=10 .
  • Выше было описано, как находить площадь квадрата, если известна диагональ: S=диагональ в квадрате разделить на 2. S=10*10 и разделить на 2=50.
  • Ответ — 50 .

Эта задача немного сложнее, но тоже легко решаемая, если знать все формулы.



На картинке видно, что радиус вписанной окружности равен половине стороны. Сторона находится по формуле обратной той, которая изображена на картинке: а=2*r . Потом уже находим площадь квадрата описанного около окружности с заданным радиусом по формуле S=а в квадрате . Решение:

  • Допустим, радиус равен 7. Сторона квадрата а равна 2*7=14.
  • S=14 в квадрате=196 .

Если понять суть решения подобных задач, то можно решать их быстро и просто. Давайте рассмотрим еще несколько примеров.

Примеры решения задач на тему «Площадь квадрата»

Чтобы закрепить пройденный материал и запомнить все формулы, необходимо решить несколько примеров задач на тему «Площадь квадрата». Начинаем с простой задачи и движемся к решению более сложных: Примеры решения сложных задач на тему «Площадь квадрата»

Теперь вы знаете, как пользоваться формулой площади квадрата, а значит, вам любая задача под силу. Успехов в дальнейшем обучении!

Видео: Вычисление площади квадрата

Для вычисления площади и периметра квадрата нужно разобраться в понятиях этих величин. Квадрат представляет собой прямоугольник только с четырьмя одинаковыми сторонам, которые имеют между собой угол в 90°. Периметр - это сумма длин всех сторон. Площадь - это произведение длины прямоугольной фигуры на ее ширину.

Площадь квадрата и как ее найти

Как было сказано выше, квадрат - это прямоугольник, имеющий 4 равные стороны, поэтому ответом на вопрос: «как найти площадь квадрата» является формула: S = a*a или S = a 2 , где а - сторона квадрата. Исходя из этой формулы, легко находится сторона квадрата, если известна площадь. Для этого необходимо извлечь квадрат из указанной величины.

Например, S = 121, следовательно, а = √121 = 11. Если заданное значение отсутствует в таблице квадратов, то можно воспользоваться калькулятором: S = 94, а = √94 = 9,7.

Как найти периметр квадрата

Периметр квадрата находится по легкой формуле: Р = 4а, где а - сторона квадрата.

Пример:

  • сторона квадрата = 5, следовательно, P = 4*5 = 20
  • сторона квадрата = 3, следовательно, Р = 4*3 = 12

Но существуют такие задачи, где заведомо обозначена площадь, а нужно найти периметр. При решении нужны формулы, которые представлены ранее.

Например: как найти периметр квадрата, если известна площадь, равная 144?

Шаги решения:

  1. Выясняем длину одной стороны: а = √144 = 12
  2. Находим периметр: Р = 4*12 = 48.

Нахождение периметра вписанного квадрата

Существуют еще несколько способов нахождения периметра квадрата. Рассмотрим один из них: нахождение периметра через радиус описанной окружности. Здесь появляется новый термин «вписанный квадрат» - это квадрат, чьи вершины лежат на окружности.

Алгоритм решения:


  • так как на рассмотрении квадрат, формулу можно выразить таким образом: a 2 + a 2 = (2r) 2 ;
  • затем следует уравнение сделать проще: 2a 2 = 4(r) 2 ;
  • делим уравнение на 2: (a 2 ) = 2(r) 2 ;
  • извлекаем корень: a = √(2r).

В итоге получаем последнюю формулу: а (сторона квадрата) = √(2r).

  1. Найденная сторона квадрата умножается на 4, далее применяется стандартная формула по нахождению периметра: P = 4√(2r).

Задача:

Дан квадрат, который вписан в окружность, ее радиус равен 5. Значит, диагональ квадрата равняется 10. Применяем теорему Пифагора: 2(a 2 ) = 10 2 , то есть 2a 2 = 100. Делим полученное на два и в результате: a 2 = 50. Так как это не табличное значение, используем калькулятор: а = √50 = 7,07. Умножаем на 4: Р = 4*7,07 = 28,2. Задача решена!

Рассмотрим еще один вопрос

Часто в задачах встречается другое условие: как найти площадь квадрата, если известен периметр?

Мы уже рассмотрели все необходимые формулы, поэтому для решения задач подобного типа, необходимо умело их применять и связывать между собой. Перейдем сразу к наглядному примеру: Площадь квадрата равна 25 см 2 , найдите его периметр.

Шаги решения:

  1. Находим сторону квадрата: а = √25 = 5.
  1. Находим сам периметр: Р = 4*а = 4*5 = 20.

Подводя итог, важно напомнить, что такие легкие формулы применимы не только в учебной деятельности, но и повседневной жизни. Периметр и площадь фигуры дети учатся находить еще в начальной школе. В средних классах появляется новый предмет - геометрия, где теорема Пифагора находится в самом начале изучения. Эти азы математики проверяются и по окончанию школы ОГЭ и ЕГЭ, поэтому важно знать эти формулы и правильно их применять.

Площадь геометрической фигуры - численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
  2. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  3. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
  4. где S - площадь треугольника,
    - длины сторон треугольника,
    - высота треугольника,
    - угол между сторонами и,
    - радиус вписанной окружности,
    R - радиус описанной окружности,

Формулы площади квадрата

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.
  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.
    S = 1 2
    2
  3. где S - Площадь квадрата,
    - длина стороны квадрата,
    - длина диагонали квадрата.

Формула площади прямоугольника

    Площадь прямоугольника равна произведению длин двух его смежных сторон

    где S - Площадь прямоугольника,
    - длины сторон прямоугольника.

Формулы площади параллелограмма

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма
  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    a · b · sin α

  3. где S - Площадь параллелограмма,
    - длины сторон параллелограмма,
    - длина высоты параллелограмма,
    - угол между сторонами параллелограмма.

Формулы площади ромба

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.
  4. где S - Площадь ромба,
    - длина стороны ромба,
    - длина высоты ромба,
    - угол между сторонами ромба,
    1 , 2 - длины диагоналей.

Формулы площади трапеции

  1. Формула Герона для трапеции

    Где S - Площадь трапеции,
    - длины основ трапеции,
    - длины боковых сторон трапеции,



Новое на сайте

>

Самое популярное