Домой Ремонт Датчики температуры 1 wire. Подключение датчиков температуры к умному дому Loxone

Датчики температуры 1 wire. Подключение датчиков температуры к умному дому Loxone

Цель этой статьи - рассказать, как использовать эти датчики (или другие устройства сети) в суровых "полевых условиях". Не секрет, что на столе под лампой светлой цифровой датчик DS18B20 или его бюджетный брат DS18S20 замечательно работает с минимальным обвязом со стороны микроконтроллера в т.н. двухпроводной схеме:







Дополнительная выделенная линия питания сулит нам следующие "бонусы":
  1. Длина сетевого кабеля 100 метров и более;
  2. Количество одновременно подключенных датчиков - не менее 32шт.;
  3. Разрешающая способность АЦП - 0,0625 °C и точность измерения - 1°C.

Однако, еще остается борьба с помехами на длинных линиях связи. Простейшей защитой является включенный в обратном направлении диод Шоттки между линией данный и общим проводом, именно так советует поступать Brian C. Lane , автор популярного проекта DigiTemp . Мы лишь немного расширим данное решение для трехпроводной схемы включения:


L1, L2 - фербиды BLM21AG221SN1D - индуктивности для защиты от высокочастотных помех, возникающих при коммутации сильноточных потребителей;

C1 - керамический конденсатор, естественный спутник ножек питания цифровой микросхемы;

IC1 - собственно цифровой датчик температуры DS18B20Z в корпусе SOIC8.

Все компоненты - SMD (0805 и SOT23) для уменьшения размера платы датчика:



После сборки, плата температурного датчика выглядит следующим образом:


Обязательно защищаем плату датчика от влаги (цапонлаком или акриловым лаком):


Для монтажа датчика на поверхность, например на трубопровод, очень хорошо подходит самовулканизирующаяся резиновая изолента. Кроме того, необходимо хорошо теплоизолировать точку установки датчика. Я использую пористую самоклеющуюся ленту.

Контактные площадки для пайки кабеля сети 1-Wire сознательно сделаны крупными и вот почему...

Трактат о проводочках кабеля

Самой распространенной ошибкой при построении сети 1-Wire является выбор в пользу Ethernet-кабеля Cat.5 ! Подавляющее большинство читателей скажет - "у нас все очень хорошо и бодро работает на обрезках сетевухи ". Не спорю ни в коем случае, кабель Cat.5 длиной 10..30 м вполне годится для 3-х проводного способа подключения датчиков, более того - вот вам рекомендованная схема использования народного кабеля, которую и сам использую на даче для водоснабжения дома:





"Ну таки и в чем дело?" - скажет проницательный читатель. А вот в чем: в кардинальном различии "физики и логики" сетей Ethernet и 1-Wire. Не вдаваясь в сложности организации сети Ethernet, просто прошу поверить (и с мультиметром про верить) в то, что из-за значительного падения напряжения на длинных и весьма тонких проводах кабеля Cat.5e датчику сети 1-Wire банально не хватает напряжения питания !

Датчики температуры 1-Wire используются с терминалами, которые поддерживают устройства 1-Wire DS18b20.
Датчики температуры 1-Wire не требует калибровки , просты в установке, имеет низкую стоимость.
Датчики температуры 1-Wire имеют внешнее питание , что значительно увеличивает длину трассы от датчика до терминала, и дает возможность использовать большое количество устройств на одной шине 1-Wire.
Датчики температуры 1-Wire могут работать с любым напряжением на шине 1-Wire (от 3.3 В до 5.5 В).
Датчики температуры 1-Wire имеют удобные корпуса крепления.

Датчики температуры 1-Wire выпускаются в двух модификациях:
– 1. Для эксплуатации в температурном диапазоне от -40°C до +80 °C . Длина экранированного провода – 10 метров.
– 2. Для эксплуатации в температурном диапазоне от -55
°C до +125 °C . Длина экранированного термостойкого провода – 1 метр. (Любая длинна провода под заказ. +120 руб. за каждый дополнительный метр).

Цены

Количество от 100 от 75 до 99 от 60 до 74 от 45 до 59 от 30 до 44 от 15 до 29 до 14

Цена 1-Wire -40 °C до +80 °C (руб).
Длинна экранированного провода – 10 метров.

700 730 760 790 820 850 880

Цена 1-Wire -55 °C до +125 °C (руб).
Длина экранированного термостойкого провода – 1 метр.
Любая длинна провода под заказ. +120 руб за каждый дополнительный метр.

700 730 760 790 820 850 880

Технические характеристики датчика измерения температуры 1-Wire

Диапазон измеряемых температур

от – 55 до + 125 °C
Температура эксплуатации
от – 40 до + 80 °C
или
от – 55 до + 125 °C​

Погрешность измерений

-10°C to +85°C – ±0.5 °C
-30°C to +100°C – ±1 °C
-55°C to +125°C – ±2 °C​

Напряжение на шине 1-Wire

от 3.3 до 5.5 В

Напряжение питания датчика

9-36 В

Ток потребления в режиме ожидания

0.1 mA

Ток потребления в режиме измерения

1 mA
Длина соединительного кабеля, входящего в комплект датчика
(в зависимости от выбранной модификации)
10 метров +/- 2 %
или
1 метр +/- 2 %

Класс защиты сенсора датчика

IP 68

Гарантия производителя

18 месяцев

Подключение датчика 1-Wire. Модификация № 1 (от -40 °C до +80°C)

Цвета проводов в кабеле с экранирующей оплеткой

Выводы датчика Описание
Красный-Белый Красный
Экранирующая оплетка кабеля "Масса" (Минус питания)
Белый К шине 1-Wire
Красный-Синий Красный Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Синий К шине 1-Wire
Красный-Желтый Красный Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Желтый К шине 1-Wire
Красный-Серый Красный Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Серый К шине 1-Wire
Красный-Черный Красный Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Черный К шине 1-Wire
Оранжевый-Зеленый Оранжевый Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Зеленый К шине 1-Wire
Желтый-Синий Желтый Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Синий К шине 1-Wire
Желтый-Зеленый Желтый Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Зеленый К шине 1-Wire
Желтый-Серый Желтый Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Серый К шине 1-Wire
Желтый-Черный Желтый Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Черный К шине 1-Wire
Желтый-Белый Желтый Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Белый К шине 1-Wire
Прозрачный-Зеленый Прозрачный Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Зеленый К шине 1-Wire
Жёлтый-Оранжевый Жёлтый Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Оранжевый К шине 1-Wire
Жёлтый-Коричневый Жёлтый Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Коричневый К шине 1-Wire
Красный-Прозрачный Красный Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Прозрачный К шине 1-Wire

Подключение датчика 1-Wire. Модификация № 2 (от -55 °C до +125°C)

Цвета проводов в термостойком кабеле
с экранирующей оплеткой

Выводы датчика Описание
Красный-Черный Красный Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Черный К шине 1-Wire
  • Tutorial

Имеем в наличии гермозону на 4 ряда с 16-тью открытыми стойками в каждом ряду.
Схема кондиционирования: горячие-холодные коридоры, внутренние кондиционеры с внешними испарителями, 3 кондиционера на ряд, то есть 6 кондиционеров на холодный коридор.

Задача: построить систему мониторинга температуры гермозоны с возможностью предупреждения выхода кондиционеров из строя.

Для решения данной задачи решено было использовать сеть 1-wire температурных датчиков и систему мониторинга Zabbix 2.

Собираем сеть 1-wire.

Нам необходимо:

1. Контроллер 1-Wire сети DS9490R

2. Температурные датчики DS18B20 , в количестве, расчитываем: 4 ряда * 16 стоек в ряду * 2 датчика на стойку (холодный и горячие коридоры), то есть 128 датчика.

3. Для удобной установки датчика использовали вот такой переходник RJ45 на RJ45, кат. 5e GCT11-8p8c , так же в количестве 128 штук

4. И на каждый датчик по 2 патч-корда, то есть 128 * 2 = 256, длина патч-корда половина ширины стойки сервера

Собираем датчик, выбираем в переходнике три любых провода, делаем 3 дырки в переходнике, припаиваем датчик и так 128 раз:)
Рекомендуется залить место припоя клеем из термопистолета, получается что-то похоже на это:

Датчики сразу рекомендуется проверять на работу, прямым подключением к контролеру 1-wire сети и считывания с него информации. Так же рекомендуется пронумеровать датчики: последовательно наклеить номера с 1 по 128. Инициализация 1-wire сети будет описана ниже.

А так это смотрится если закрепить на стойке.

Так как на контролере разъем RJ11, а не RJ45, то рекомендую сделать нулевой датчик-переходник, его порядковый номер будет ноль, а номера стоек будут начинаться с 1, что более привычно.

ВАЖНО!
Протяженность нашей сети составила около 140 метров, так как сервер находился в 2 ряду.
В процессе тестирования выяснилось, что питания порта USB не хватает для такой длиной сети, контролер просто не может опросить датчики, дальше половины сети, поэтому рекомендую купить USB хаб, обязательно с внешнем питанием, и подключить контролер к нему. После подключения хаба, скорость опроса датчиков возросла, и в сети перестали появляться ошибки, все датчики читались.
Разбить сеть на два сегмента мне не удалось, так как программа которая считывает данные с датчиков, так и не смогла понять с каким контролером работать, по крайне мере заставить мне не удалось.

Инициализация 1-wire сети и получение значений датчиков.

Итак приступаем к настройке программной части.

Сервер к которому подключен USB контролер 1-wire сети работает под управлением FreeBSD 9.1, Zabbix 2.0.8 установлен из портов.

Для получения значений датчиков используется программа DigiTemp

Скачиваем исходники DigiTemp и компилируем, скомпилированные программы у меня располагаются: /usr/local/etc/digitemp/new/digitemp-3.6.0/

Для работы с нашем контроллером используем программу digitemp_DS2490

# cd /usr/local/etc/digitemp/new/digitemp-3.6.0/
# ./digitemp_DS2490 -i

DigiTemp нужно запускать из под root, чтобы она могла читать данные с устройства.
Необходимо запускать программу только из ее каталога, так как там хранится файл конфигурации сети.

./digitemp_DS2490 -i - результатом выполнения будет являться файл конфигурации сети 1-wire с названием.digitemprc, в домашнем каталоге программы.
При этом digitemp выведет 64-битные ID датчиков, которые запишет в файл.

Пример.digitemprc
TTY USB
READ_TIME 1000
LOG_TYPE 1
LOG_FORMAT "%b %d %H:%M:%S Sensor %s C: %.2C F: %.2F"
CNT_FORMAT "%b %d %H:%M:%S Sensor %s #%n %C"
HUM_FORMAT "%b %d %H:%M:%S Sensor %s C: %.2C F: %.2F H: %h%%"
SENSORS 133


ROM 5 0x28 0xCB 0xE2 0x19 0x03 0x00 0x00 0x6F

ВАЖНО
Номер счетчика ROM 0 0x28 0x62 0xB5 0x19 0x03 0x00 0x00 0x61, НЕ ЯВЛЯЕТСЯ его физически последовательным номером в сети, этот номер получен во время инициализации сети, то есть кто первым ответил, тот и записался в файл.
Поэтому на стадии пайки датчиков и их проверки рекомендую формировать, сразу последовательную сеть. То есть берем датчик, спаяли, подсоединили сразу к контролеру, запустили./digitemp_DS2490 -i получили его ID, скопировали его в Excel таблицу и так же добавили последовательно ROM номер … в таблицу.
Отсоединили датчик, наклеили на него последовательный номер, и повесили на гирлянду, соединяя патч-кардами. Не рекомендую подсоединять гирлянду к контролеру и запускать проверку, во-первых это будет гораздо дольше, а во-вторых в свете вышесказанного, из-за того, что ответы от датчиков приходят не последовательно, искать ID нового датчика будет сложнее.

После того как вы протестировали все датчики, подсоедините гирлянду к контролеру и запустите./digitemp_DS2490 -i

Сформируется конфигурационный файл вашей сети.digitemprc

Вам необходимо заменить
ROM 0 0x28 0x62 0xB5 0x19 0x03 0x00 0x00 0x61
ROM 1 0x28 0x29 0xD5 0x19 0x03 0x00 0x00 0xFD
ROM 2 0x28 0x59 0xDE 0x19 0x03 0x00 0x00 0x15
ROM 3 0x28 0xDA 0xD6 0x19 0x03 0x00 0x00 0x98
ROM 4 0x28 0xFD 0xBE 0x19 0x03 0x00 0x00 0x84

На ту последовательно которая у вас получилась в Excel файле в таком же формате.

Сохраните полученный файл.digitemprc в другой папке, так как если вы вдруг запустите еще раз./digitemp_DS2490 -i , то ваш файл будет перезаписан, и тогда физическая адресация будет неверной с большой долей вероятности.

После того как 1-wire сеть настроена, можно считывать значения датчиков, запустите./digitemp_DS2490 -q -a -r1 -n1 , программы выведет значения датчиков.

Проверьте правильность последовательного подключения в сети, например нагрейте 5 датчик, и запустите программу, температура должна возрастать на 4 (так как нумерация идет с 0)

Переходим к настройке Zabbix .

Сервер на котором установлен Zabbix в zabbix’е называется ZabbixServer.
Создаем в нем 129 элементов данных, то есть на каждый датчик температуры по элементу данных.

Для нас здесь важно понимать:
gmz.temp.t17 - это ключ элемента, они используется для отсылки значения датчика
и тип элемента должен быть “Zabbix trapper”, так как отправка значений будет происходить через программу zabbix_sender.

Создаем также 12 дополнительных элементов данных, на каждый из 12 кондиционеров. Датчики расположены так, что 3 датчика находится под выводом холодного воздуха кондиционера, поэтому считаем среднее этих трех датчиков, то элемент данных будет вычисляемым.

Обратите внимание на формулу, то есть складываются последние полученные значения датчиков и делится на три.

В crontab пользователя root добавляем задание:
*/1 * * * * /usr/local/etc/digitemp/digitemp_cron.sh > /dev/null 2>&1

То есть запускаем раз в минуту скрипт digitemp_cron.sh
cat /usr/local/etc/digitemp/digitemp_cron.sh

#!/usr/local/bin/bash
cd /usr/local/etc/digitemp/new/digitemp-3.6.0/
./digitemp_DS2490 -q -a -r1 -n1 -o"ZabbixServer gmz.temp.t%s %N %.2C" | /usr/local/bin/zabbix_sender -vv -z 127.0.0.1 -I 127.0.0.1 -T -i -

O"ZabbixServer gmz.temp.t%s %N %.2C" - это строка определяет формат вывода данных.

ВАЖНО!
ZabbixServer - это название хоста с установленным Zabbix server в Zabbix.

Запустите./digitemp_DS2490 -q -a -r1 -n1 -o"ZabbixServer gmz.temp.t%s %N %.2C" | /usr/local/bin/zabbix_sender -vv -z 127.0.0.1 -I 127.0.0.1 -T -i -

В результате работы zabbix_sender должно быть, что все строки отправлены и приняты:

Info from server: «Processed 133 Failed 0 Total133 Seconds spent 0.000540»
sent: 133; skipped: 0; total: 133

Если все так, то вы можете добавлять графики и триггеры, и настраивать оповещения.

Интерфейс 1-Wire разработан фирмой Dallas Semiconductor, все права на этот интерфейс принадлежат исключительно этой фирме (Которая, впрочем, уже давно прекратила свое самостоятельное сущестование и перешла под крыло корпорации MAXIM Inc.).
Чем привлекателен этот интерфейс? Разумеется, малым количеством выводов МК, требующихся для подключения практически неограниченного количества микросхем. В самом деле, двусторонний обмен требует всего 1 линию! Кроме того, ассортимент устройств с этим интерфейсом весьма широк. Наконец, протокол обмена по этому интерфейсу очень прост и легко реализуется программно практически на любых МК хотя есть и специальные микросхемы-адаптеры).

Фирменная документация по указанному интерфейсу и устройствах, его поддерживающих, находится по адресу http://www.maxim-ic.com/1-Wire.cfm.

Аппаратная реализация интерфейса 1-Wire

На рисунке показана упрощенная схема аппаратной реализации интерфейса 1-Wire. Вывод DQ устройства представляет собой вход КМОП-логического элемента, который может быть зашунтирован (замкнут на общий провод) полевым транзистором. Сопротивление канала этого транзистора в открытом состоянии - около 100 Ом. Когда транзистор заперт - имеется небольшой ток утечки (примерно 5 мкА) на общий провод.
Шина 1-Wire должна быть подтянута отдельным резистором к напряжению питания устройств (которое, кстати, может быть от 3 до 5В - уточняется по характеристикам конкретного устройства). Сопротивление этого резистора 4.7 К, однако, это значение рекомендовано только для достаточно коротких линий. Если шина 1-Wire используется для подключения удаленных на большое расстояние устройств, то сопротивление этого резистора следует уменьшить. Чуть позже я коснусь этой проблемы и поясню причины необходимости такого уменьшения сопротивления, а пока скажу, что минимально допустимое его сопротивление - около 300 Ом, а максимальное - около пары-тройки десятков килоом. Данные величины - ориентировочные, вы всегда должны уточнить по характеристикам конкретного устройства 1-Wire его максимальный втекающий ток линии DQ, который, собственно, и определяет минимум внешнего сопротивления.
Подключение шины 1-Wire к МК показано условно в двух вариантах: с использованием 2 отдельных выводов МК (один в качестве выхода, а другой в качестве входа), так и одного, работающего и на ввод и на вывод. Разделение этих способов показано пунктирной линией, условно обозначающей границу корпуса МК. С некоторой натяжкой можно представить себе логическое строение шины 1-Wire как всем известное соединение выводов микросхем с открытым коллектором по схеме "монтажное ИЛИ". Очевидно, что передача какой-либо информации при этом возможна только выдачей низкого уровня в линию, т.е. замыканием ее на общий провод, а в высокий логический уровень линия вернется сама, благодаря наличию внешнего подтягивающего резистора. Так же очевидно, что одновременная передача нескольких устройств обречена на неудачу из-за полного искажения информации (все передаваемые единицы одного устройства будут подавлены передаваемыми нулями от другого устройства).

Программная реализация интерфейса 1-Wire

А теперь о том, как происходит обмен информацией по шине 1-Wire. Основные постулаты.
1. Обмен всегда ведется по инициативе одного ведущего устройства, которое в большинстве случаев является микроконтроллером (МК).
2. Любой обмен информацией начинается с подачи импульса сброса ("Reset Pulse" или просто RESET) в линию 1-Wire ведущим устройством.
3. Для интерфейса 1-Wire в общем случае предусматривается "горячее" подключение и отключение устройств.
4. Любое устройство, подключенное к 1-Wire после получения питания выдает в линию DQ импульс присутствия, называемый "Presence pulse" (далее я буду использовать термин PRESENCE). Этот же импульс устройство всегда выдает в линию, если обнаружит сигнал RESET.
5. Появление в шине 1-Wire импульса PRESENCE после выдачи RESET однозначно свидетельствует о наличии хотя бы одного подключенного устройства.
6. Обмен информации ведется так называемыми тайм-слотами: один тайм-слот служит для обмена одним битом информации.
7. Данные передаются побайтно, бит за битом, начиная с младшего бита. Достоверность переданных/принятых данных (проверка отсутствия искажений) гарантируется путем подсчета циклической контрольной суммы.
Основные постулаты определяют логический низкоуровневый протокол обмена данными.
На следующем рисунке показана диаграмма сигналов RESET и PRESENCE, с которых всегда начинается любой обмен данными. Кстати, выдача импульса RESET в процессе обмена служит для досрочного завершения процедуры обмена информацией.

Диаграмма сигналов инициализации обмена

Как видим, длительность большинства временных интервалов очень приблизительная и имеет только ограничение только по минимуму (не меньше указанного). Условные обозначения линий, показанные на Рис. 2, будут использоваться и далее.
Импульс RESET формирует ведущий МК, переводя в низкий логический уровень шину 1-Wire и удерживая ее в этом состоянии минимум 480 микросекунд. Затем МК должен "отпустить" шину. Через некоторое время, зависящее от емкости линии и сопротивления подтягивающего резистора, в линии установится высокий логический уровень. Протокол 1-Wire ограничивает это время "релаксации" диапазоном от 15 до 60 микросекунд, что и является определяющим для выбора подтягивающего резистора (как правило, емкость линии мы менять существенно не можем, а именно она оказывает существенное влияние на время возврата линии к высокому уровню).
Обнаружив импульс RESET, ведомое устройство приводит свои внутренние узлы в исходное состояние и формирует ответный импульс PRESENCE, как следует из рисунка - не позже 60 микросекунд после завершения импульса RESET. Для этого устройство переводит в низкий уровень линию DQ и удерживает ее в этом состоянии от 60 до 240 микросекунд. Конкретное время удержания зависит от многих параметров, но всегда находится в указанном диапазоне. После этого устройство так же "отпускает" шину.
Но после завершения импульса PRESENCE устройству дается еще некоторое время для завершения внутренних процедур инициализации, таким образом, МК должен приступить к любому обмену с устройством не ранее, чем через 480 микросекунд после завершения импульса RESET.
Итак, процедура инициализации интерфейса, с которой начинается любой обмен данными между устройствами, длится минимум 960 микросекунд, состоит из передачи от МК сигнала RESET и приему от устройства сигнала PRESENCE. Если сигнал PRESENCE не обнаружен - значит на шине 1-Wire нет готовых к обмену устройств.

Теперь рассмотрим процедуры обмена битами информации, которые, как вы помните, осуществляются определенными тайм-слотами. Тайм-слот - это по существу определенная, довольно жестко лимитированная по времени последовательность смены уровней сигнала в линии 1-Wire. Различают 4 типа тайм-слотов (я буду использовать термин МК, как синоним "ведущего устройства" и просто "устройство", как синоним "ведомого"): передача "1" от МК, передача "0" от МК, прием "1" от устройства и прием "0" от устройства.
Любой тайм-слот всегда начинает МК путем перевода шины 1-Wire в низкий логический уровень. Длительность любого тайм-слота должна находиться в пределах от 60 до 120 микросекунд. Между отдельными тайм-слотами всегда должен предусматриваться интервал не менее 1 микросекунды (конкретное значение определяется параметрами ведомого устройства).
Тайм-слоты передачи отличаются от тайм-слотов приема поведением МК: при передаче он только формирует сигналы, при приеме, кроме того, еще и опрашивает (т.е. принимает) уровень сигнала в линии 1-Wire. Следующй рисунок демонстрирует временные диаграммы тайм-слотов всех 4-х типов: вверху показаны тайм-слоты передачи от МК, внизу - приема от устройства.

Тайм-слот передачи "0" заключается просто в удержании шины 1-Wire в низком уровне в течение всей длительности тайм-слота. Передача "1" осуществляется путем "отпускания" шины 1-Wire со стороны МК не ранее чем через 1 микросекунду после начала тайм-слота, но не позже чем через 15 микросекунд. Ведомое устройство опрашивает уровень в шине 1-Wire в течение временного интервала, условно показанного в виде серого прямоугольника, т.е. начиная с 15-й микросекунды от начала тайм-слота и заканчивая 60-й микросекундой от начала. Типичный момент ввода уровня в устройство (т.е. характерный для большинства устройств) - около 30-й микросекунды от начала тайм-слота.
Заштрихованная область - это область "нарастания" уровня в шине 1-Wire, которая зависит от емкости линии и сопротивления подтягивающего резистора, она приведена для справки.
Тайм-слоты приема информации отличаются тем, что МК формирует только начало тайм-слота (абсолютно так же, как при передаче "1"), а затем управление уровнем шины 1-Wire берет на себя устройство, а МК осуществляет ввод этого уровня так же в определенной зоне временных интервалов. Зона эта, как видно из рисунка, довольно мала. Как и раньше, заштрихованная область - область неопределенности, поэтому для ввода, собственно говоря, контроллеру остается даже не промежуток, а скорее конкретный момент, когда он должен ввести уровень сигнала из линии. Этот момент времени - 14-я или 15-я микросекунда от начала тайм-слота. Разумеется, если линия имеет малую емкость, а подтягивающий резистор мал, зона опроса несколько расширяется, однако рекомендую ориентироваться на худший вариант (как, кстати, рекомендует и фирма-производитель), что-бы всегда обеспечить надежный обмен данными.

Итак, подведем итоги. МК начинает тайм слот с выдачи в шину 1-Wire "0" в течение 1 микросекунды. Последующий уровень зависит от типа тайм слота: для приема и передачи "1" уровень должен стать высоким, а для передачи "0" - оставаться низким вплоть до конца тайм-слота, т.е. не менее 60 и не более 120 микросекунд. Если МК принимает данные, то опрос уровня в шине он должен сделать на промежутке от 13-й до 15-й микросекунде тайм-слота. МК должен обеспечить интервал между отдельными тайм-слотами не менее 1 микросекунды (лучше - больше, максимальное значение не ограничено).
Важно понимать, что следует очень тщательно подходить к обеспечению в шине 1-Wire требуемых временных интервалов, т.к., например, увеличение длительности тайм-слота вывода "0" свыше рекомендованного значения может привести к ошибочному восприятию этого тайм-слота, как сигнала RESET, и, разумеется, после этого вся процедура обмена пойдет насмарку. Но так же следует учитывать влияние самой линии на длительность фронтов импульсов. Поэтому в общем случае, это не простая задача. Но выполнение несложных рекомендаций позволит ее решить достаточно простыми средствами: во-первых, все сигналы, которые должен формировать МК, следует формировать по принципу необходимого минимума длительности (т.е. немного больше, чем указанная минимальная длительность), а от устройства следует ожидать сигналов по принципу наихудшего (т.е. ориентироваться на самые худшие варианты временных параметров сигнала).
Если вы разрабатываете схему, которая целиком умещается на одной плате вместе со всеми устройствами на шине 1-Wire, то, ориентируясь на самый первый рисунок, вы получите практически идеальную линию: фронты нарастания высокого уровня в шине будут минимальными - это избавит вас от большинства проблем. Но если Вы подключаете несколько устройств через длинный соединительный шлейф - придется бороться с погонной емкостью линии.
Мною проверено, что соединение по свитым вручную обычным монтажным проводам при типовом подтягивающем резисторе однозначно возможно на расстоянии до 9 м, а для соединения по очень длинной телефонной "лапше" может потребовать уменьшения подтягивающего резистора до 510 ом и даже менее.

Разобравшись с процедурами обмена битами, пора приступать к более высокому уровню протокола обмена информацией, и для этого необходимо рассмотреть принципы адресации устройств и управления ими.
Каждое устройство 1-Wire обладает уникальным идентификационным 64-битным номером, программируемым на этапе производства микросхемы. Уникальным - это значит, что фирма-производитель гарантирует, что не найдется двух микросхем с одинаковым идентификационным номером (по крайней мере в течении нескольких десятков лет при существующих темпах производства).
При рассмотрении протокола обмена мы будем исходить из принципа, что на шине 1-Wire имеется более одного устройства. В этом случае перед МК встают 2 проблемы: определение количества имеющихся устройств и выбор (адресация) одного конкретного из них для обмена данными. Решение первой проблемы осуществляется двумя путями: универсальным и гибким, но требующим довольно сложного программно-реализуемого алгоритма, и простым, но с большими ограничениями. Универсальный алгоритм мы рассматривать не будем, т.к. это требует отдельной статьи. А более простой заключается в том, что номера всех используемых в вашей схеме 1-Wire-устройств вы должны знать заранее, и просто использовать их как константы в вашей программе. Номера некоторых устройств нанесены прямо на корпусе микросхем (например, для устройств iButton - всем известных ключей-таблеток), а номера других можно определить при помощи специальных программ или устройств (о них в конце статьи). iButton - зарегистрированная торговая марка, права на которую принадлежат Dallas Semiconductor, дополнительная информация об этом семействе изделий на есть на сайте.
Итак, предположим, что мы знаем номера всех устройств 1-Wire на шине. Как же ведется работа с ними? Алгоритм тут следующий. МК посылает, как обычно, импульс RESET, и все имеющиеся устройства выдают PRESENCE. Затем МК посылает в шину команду, которую принимают все устройства. Команд определено несколько общих для всех типов 1-Wire-устройств, а так же могут быть команды, уникальные для отдельных типов. Среди общих команд нас в первую очередь могут заинтересовать следующие (см. табли-цу).

Значение байта

Описание

SEARCH ROM

Поиск адресов - используется при универсальном алгоритме определения количества и адресов подключенных устройств

READ ROM

Чтение адреса устройства - используется для определения адреса единственного устройства на шине

MATCH ROM

Выбор адреса - используется для обращения к конкретному адресу устройства из многих подключенных

SKIP ROM

Игнорировать адрес - используется для обращения к единственному устройству на шине, при этом адрес устройства игнорируется (можно обращаться к неизвестному устройству)

Первую команду мы не станем рассматривать по ранее изложенной причине, вторая позволит вам определить адрес имеющихся у вас устройств перед их установкой в готовое изделие, а две последние наверняка станут основными в вашей работе.
После того, как МК выдаст команду READ ROM, от устройства поступит 8 байт его собственного уникального адреса - МК должен их принять. Учтите, что любая процедура обмена данными с устройством должна быть завершена полностью либо прервана посылкой сигнала RESET.
Если отправлена команда MATCH ROM, то после нее МК должен передать так же и 8 байт конкретного адреса устройства, с которым будет осуществляться последующий обмен данными. Это равносильно выставлению адреса на параллельной шине в микропроцессорных устройствах. Приняв эту команду, каждое устройство сравнивает передаваемый адрес со своим собственным. Все устройства, адрес которых не совпал, прекращают анализ и выдачу сигналов в линии 1-Wire, а опознавшее адрес устройство продолжает работу. Теперь все данные, передаваемые МК будут попадать только к этому "адре-сованному" устройству. То, какие именно данные надо послать в устройство или получить от него после его адресации, зависит от конкретного устройства и в настоящей статье не рассматривается (например, для упомянутого термометра это могут быть команды запуска измерения или считывания результата, для ключа-таблетки не определены никакие иные команды, кроме основных, а для микросхем АЦП дополнительных команд может быть около десятка).
Если устройство одно на шине - можно ускорить процесс взаимодействия с ним при помощи команды SKIP ROM. Поучив эту команду, устройство сразу считает адрес совпавшим, хотя никакого адреса за этой командой не следует. Некоторые процедуры не требуют приема от устройства никаких данных, в этом случае команду SKIP ROM можно использовать для передачи какой-то информации сразу всем устройствам. Это можно использовать, например, для одновременного запуска цикла измерения температуры несколькими датчиками-термостатами типа DS18S20.
Прием и передача байтов всегда начинается с младшего бита. Порядок следования байтов при передаче и приеме адреса устройства так же ведется от младшего к старшему. Порядок передачи другой информации зависит от конкретного устройства, поэтому следует обращаться к документации на применяемые вами устройства.

В завершение обзора интерфейса рассмотрим детально строение уникального 64-битного номера-адреса устройств 1-Wire. Он состоит фактически из 8 отдельных байт: одного байта идентификатора семейства, шести байт (48 бит) собственно уникального адреса и одного байта контрольной суммы всех предыдущих байтов. Рассмотрение этих составных частей начнем, по традиции, в обратном порядке.
Итак, контрольная сумма или CRC - это байт, значение которого передается самым последним и вычисляется по специальному алгоритму на основе значения всех 7-и предыдущих байтов. Алгоритм подсчета таков, что если все байты переданы-приняты без искажений (а искажения вполне возможны, если вспомнить характер аппаратной реализации интерфейса), принятый байт контрольной суммы обязательно совпадет с рассчитанным в МК (или устройстве) значением. Т.е. при реализации программного алгоритма обмена информацией мы должны при передаче и приеме байтов подсчитывать их контрольную сумму по строго определенному алгоритму, а затем либо передать полученное значение (если мы вели передачу адреса/данных), либо сравнить расчетное значение с принятым значением CRC. Только при совпадении обоих CRC МК или устройство считают принятые данные достоверными. В противном случае продолжение обмена невозможно.
Очевидно, что алгоритм подсчета CRC должен быть одинаковым как для МК, так и для любого устройства. Он "стандартизирован" и описан в документации. Однако его понимание требует определенных умственных усилий и, что лично для меня более критично, наличия времени, которого постоянно не хватает. Именно поэтому я не стану описывать сам алгоритм расчета (все желающие могут познакомиться с ним по фирменному документу Application Note 27 "Understanding and Using Cyclic Redundancy Checks with Dallas Semiconductor iButtonTM Products"), а просто приведу примеры программной реализации этого алгоритма, которые можно использовать не особо углубляясь в математические дебри. Разумеется, вы легко сможете адаптировать приводимые примеры под свои нужды. Кстати, по этим примерам можно восстановить и алгоритм расчета CRC.

Пример первый: ассемблер MCS-51. Подпрограмма расчета CRC.
Эта подпрограмма использует одну ячейку памяти CRC для хранения результата. Перед первым вызовом эту ячейку необходимо обнулить. В аккумуляторе - очередной принятый или передаваемый байт. После того, как все байты переданы/приняты в ячейке CRC получится контрольная сумма. Подпрограмма не портит никаких регистров, кроме регистра состояния.

DO_CRC:
PUSH ACC ; сохраняем аккумулятор
PUSH B ; сохраняем регистр В
PUSH ACC ; сохраняем байт данных
MOV B, #8 ; кол-во битов (счетчик циклов)
CRC_LOOP:
XRL A, CRC ; XOR с предыдущим значением контрольной суммы
RRC A ; сдвиг вправо через флаг переноса
MOV A, CRC ; берем последнее значение CRC
JNC ZERO ; переход, если не было переноса
XRL A, #18H ; обновляем значение CRC путем XOR с константой
ZERO:
RRC A ; снова сдвигаем CRC
MOV CRC, A ; сохраняем новое значение CRC
POP ACC ; восстанавливаем байт данных
RR A ; циклически сдвигаем вправо
PUSH ACC ; снова сохраняем значение
DJNZ B, CRC_LOOP ; повторяем цикл 8 раз (для каждого бита)
POP ACC ; очищаем стек
POP B ; восстанавливаем прежние значения регистров из стека
POP ACC
RET ; завершение процедуры

Использование этой (да и последующей) подпрограммы очень простое: перед началом приема или передачи надо обнулить ячейку CRC, а затем каждый принятый или переданный байт поместить в аккумулятор и вызвать эту подпрограмму. После того, как приняты все 8 (обратите внимание - именно 8!) байтов уникального адреса устройства, необходимо проверить содержимое ячейки CRC: ненулевое ее значение свидетельствует о наличии искажения принятых данных. Если же CRC=0 - это значит, что данные приняты без искажений. Если же МК вел передачу уникального адреса устройства, то содержимое CRC должно быть передано 8-ым байтом после предыдущих семи.

Пример второй: процедура на языке Pascal с использованием табличных вычисле-ний CRC. Как и предыдущая, эта процедура должны быть вызвана для каждого передаваемого/принимаемого байта, а перед первым использованием переменная CRC должна быть обнулена.

Var
CRC: Byte; {переменная-результат расчета контрольной суммы}

Procedure Do_CRC(X: Byte);
{Эта процедура вычисляет контрольную сумму по стандартному алгоритму для устройств 1-Wire и накапливает результат в глобальной переменной CRC}

Const
{Нижеследующая таблица содержит заранее вычисленные сигнатуры, используемые для быстрого расчета CRC}

Table: Array of Byte = (0, 94, 188, 226, 97, 63, 221, 131, 194, 156, 126, 32, 163, 253, 31, 65,
157, 195, 33, 127, 252, 162, 64, 30, 95, 1, 227, 189, 62, 96, 130, 220,
35, 125, 159, 193, 66, 28, 254, 160, 225, 191, 93, 3, 128, 222, 60, 98,
190, 224, 2, 92, 223, 129, 99, 61, 124, 34, 192, 158, 29, 67, 161, 255,
70, 24, 250, 164, 39, 121, 155, 197, 132, 218, 56, 102, 229, 187, 89, 7,
219, 133, 103, 57, 186, 228, 6, 88, 25, 71, 165, 251, 120, 38, 196, 154,
101, 59, 217, 135, 4, 90, 184, 230, 167, 249, 27, 69, 198, 152, 122, 36,
248, 166, 68, 26, 153, 199, 37, 123, 58, 100, 134, 216, 91, 5, 231, 185,
140, 210, 48, 110, 237, 179, 81, 15, 78, 16, 242, 172, 47, 113, 147,205,
17, 79, 173, 243, 112, 46, 204, 146, 211, 141, 111, 49, 178, 236, 14, 80,
175, 241, 19, 77, 206, 144, 114, 44, 109, 51, 209, 143, 12, 82, 176, 238,
50, 108, 142, 208, 83, 13, 239, 177, 240, 174, 76, 18, 145, 207, 45, 115,
202, 148, 118, 40, 171, 245, 23, 73, 8, 86, 180, 234, 105, 55, 213, 139,
87, 9, 235, 181, 54, 104, 138, 212, 149, 203, 41, 119, 244, 170, 72, 22,
233, 183, 85, 11, 136, 214, 52, 106, 43, 117, 151, 201, 74, 20, 246, 168,
116, 42, 200, 150, 21, 75, 169, 247, 182, 232, 10, 84, 215, 137, 107, 53);

Begin
CRC:= Table;
{Расчет заключается в простом извлечении результата из таблицы}
End;

Как видите, табличный метод расчета значительно проще алгоритмического математического, и обладает существенно большим быстродействием, однако требует гораздо больше памяти программ для хранения таблицы.
Поклонники языка Си без проблем смогут адаптировать паскалевскую процедуру в аналогичную функцию на Си.
В качестве дополнительной информации скажу, что для обмена информацией (не для адресации) с некоторыми типами устройств применяется 16-разрядная CRC, алгоритм вычисления которой немного сложнее, но так же описан в упомянутом ранее документе.

Итак, мы разобрались с алгоритмом расчета контрольной суммы уникального адреса устройства, однако это всего лишь один последний байт из 8 байтов этого адреса, необходимо рассмотреть и остальные. Предыдущие 6 байтов (помните, что мы рассматриваем байты адреса в обратном порядке?), собственно, и есть тот самый уникальный номер-идентификатор. Номер - он и есть номер, рассказывать о нем нечего, переходим к заключительному первому байту - коду семейства.
Код семейства определяет номер группы, к которой принадлежит конкретное устройство и для микросхем одного семейства, естественно, будет одинаковым. Зная (считав) код семейства из неизвестного устройства можно довольно точно определить его функциональное назначение и даже некоторые параметры. Приведу список некоторых кодов семейств 1-Wire-устройств (таблица ниже).

В этой таблице, содержащей неполный перечень семейств 1-Wire-устройств, во втором столбце в скобках указаны типы микросхем в корпусах-таблетках iButton, а без скобок - в различных корпусах для монтажа на плату. Как видите, ассортимент устройств весьма широк.

Вот и все необходимые для начала работы сведения об интерфейсе 1-Wire, протоколе обмена данными по нему и его программной реализации. Надеюсь, этих сведений будет достаточно для того, чтобы количество проблем, возникающих у вас при освоении этого интерфейса, пошло на убыль. Напомню основные шаги по его успешной реализации:

  • любой обмен информацией начинается с передачи импульса RESET и приема имульса PRESENCE;
  • если импульса PRESENCE не обнаружено - на шине нет устройств;
  • МК всегда инициирует обмен, начиная каждый тайм-слот обмена битом информации;
  • временные параметры каждого тайм-слота следует соблюдать с максимально возможной точностью;
  • для выбора одного из многих устройств на шине 1-Wire МК должен передать в шину команду MATCH ROM и затем 8 байт адреса устройства, последний (8-й) байт этого адреса - есть контрольная сумма предыдущих семи;
  • если устройство на шине одно - МК может узнать его адрес путем посылки команды READ ROM, после чего принять от устройства 8 байтов адреса, последний из которых так же будет контрольной суммой первых семи;
  • для работы с единственным устройством на шине можно отказаться от указания его адреса, для этого МК должен передать устройству команду SKIP ROM, после чего можно начинать обычный обмен данными;
  • любая начатая процедура обмена может длиться сколь угодно долго за счет пауз между отдельными тайм-слотами, но всегда должна быть завершена полностью;
  • прервать начатый обмен можно в любой момент путем выдачи импульса RESET в шину 1-Wire (но это может нарушить нормальную работу некоторых устройств).
Просмотров: 11741

1-Wire – протокол передачи данных в обе стороны по одному проводу.

Данный протокол разработан корпорацией Dallas Semiconductor (сейчас Maxim Integrated) в далёких 90-х, но активно используется и сейчас: именно на 1-Wire работает большинство "таблеток" - домофонных чипов (DS1990A), карточек доступа, а также через 1-Wire общаются популярные датчики температуры (DS18S20 и DS18B20), транзисторные ключи (DS2405 , DS2406), программируемые порты ввода-вывода (DS2408), АЦП и ЦАП, часы реального времени (DS2417) и многое другое.

Режим связи в этом протоколе – асинхронный и полудуплексный (об этом подробнее ), а также "остроконечный" (при отсылке многобайтовых целых передача идёт от младшего байта к старшему).

При этом у нас всегда есть ведущий – одно устройство на шине, которое отсылает команды, и ведомые – устройства, которые эти команды принимают и отвечают на них, если необходимо; каждое из ведомых устройств подключается непосредственно к общей шине.

Ещё раз подчеркнём – на шине может быть только ОДИН ведущий – иначе возникнут конфликты, когда оба ведущих будут тянуть одеяло на себя (на самом деле, есть некоторые приёмы организации сетей 1-Wire в режиме мультимастера – например, с помощью ветвителя сети DS2409 – но в "обычной" жизни все-таки предпочтительней иметь только одного ведущего на шине).

Протокол 1-Wire хорош тем, что не сложен в реализации и требует для связи всего два-три провода (шина данных, земля и при необходимости питание); однако при этом он не лишён и недостатков – этот протокол весьма чувствителен ко времени и к помехам. Также 1-Wire не предназначена для передачи больших объёмов информации и для скоростного обмена данными – максимальная скорость 9600 Бод/с.

Протокол 1-Wire описывает физический, канальный, сетевой и транспортный уровни взаимодействия (см. модель OSI).
На физическом уровне даются описания способов подключения, требования к шине данных и питанию и т.д.
Канальный уровень описывает способы чтения и передачи битов по протоколу.
Сетевой уровень описывает способы адресации к различным устройствам на линии.
Наконец, транспортный уровень описывает функциональные команды, используемые устройствами 1-Wire.

Физический уровень протокола

Рисунок 1. Пример подключения ведущего и ведомых устройств по протоколу 1-Wire.

К слову, о питании – согласно даташиту, шина данных должна быть подтянута к питанию резистором 4.7 кОм, однако данный номинал используется при относительно коротких линиях; если же расстояние между устройствами достаточно велико, то сопротивление резистора можно уменьшить.

Канальный уровень протокола

Обмен информацией ведётся так называемыми временными, или тайм-слотами (60 мкс): один тайм-слот служит для обмена одним битом информации. Данные передаются бит за битом, начиная с младшего бита младшего байта – это, кстати, достаточно часто приводит к ошибкам у новичков – кажется, что нужно передавать данные слева направо, так, как они хранятся в памяти (то есть, следите за словами: кажется, что нужно начинать со старшего бита младшего байта (вы уже запутались, да?) – но нет! При передаче по 1-Wire, например, двухбайтового числа порядок передачи будет таким:
Имеем число 1023410 – в двоичном виде выглядит так: 00100111 11111010 2
В памяти (так как у нас "остроконечный" порядок хранения данных) выглядит так: 11111010 00100111.
А передача по 1-Wire будет выглядеть так:
0→1→0→1→1→1→1→1→1→1→1→0→0→1→0→0
Если вы запутались так же, как и я – самое время выпить чая с шоколадкой и немного утрясти все в голове.

Идём дальше. При обмене информацией ведущий инициирует каждую связь на битном уровне. Это означает, что передача каждого бита, независимо от направления (передача или приём), должна быть инициирована ведущим. Шина данных по умолчанию подтягивается к "единице", поэтому для начала как приёма, так и для передачи ведущий опускает линию в "ноль" на некоторое время.

Внимание : ни ведущий, ни ведомые не выставляют на шине "единицу" - это черевато коротким замыканием: если одно устройство выставит на шине "1", а другое – "0"; поэтому как ведущий, так и ведомый могут использовать только два состояния: "на выход в ноль" и "z-состояние" (на вход без подтяжки). Подтяжка к питанию осуществляется резистором (!).

Рассмотрим 5 основных команд для связи по шине 1-Wire: "Запись 1", "Запись 0", "Чтение", "Сброс" и "Присутствие". При этом на рисунках красным выделено управление линией от ведущего, синим – управление линией от ведомого, черным – освобожденная линия (с помощью подтяжки шина автоматически переходит в "единицу").

Сигнал "Запись 1" . Ведущий устанавливает низкий уровень в течение 1…15 мкс. После этого, в течение оставшейся части временного слота он освобождает шину.

Сигнал "Запись 0" . Ведущий формирует низкий уровень в течение не менее 60 мкс, но не дольше 120 мкс.

Сигнал "Чтение" . Ведущий устанавливает низкий уровень в течение 1…15 мкс. После этого подчинённый, если хочет передать 0, удерживает шину в низком состоянии до 60 мкс; если же подчинённых хочет передать 1, то он просто освобождает линию. Ведущий обычно сканирует состояние шины по истечении 15 мкс после установки низкого уровня на шине.

Так, ведомый удерживает линию к земле, если хочет передать "0", и просто отпускает линию, если хочет передать "1".
Таким образом при чтении получаем следующие диаграммы.

Сигнал "Чтение при получении 1" :

Сигнал "Чтение при получении 0" :

Основные проблемы, которые возникают при реализации чтения-записи – это проблемы со временем, то есть "невыдерживание", или наоборот, "передерживание" временных задержек при чтении линии. Возникают эти проблемы из-за того, что часто не делают поправку на медленность языков программирования высокого уровня. Особенно это касается различных "дополнительных" функций и ништяков. Подробнее

Сигнал "Сброс/присутствие" . Здесь временные интервалы импульсов отличаются. Ведущий устанавливает низкий уровень в течение 8 временных слотов (480 мкс), а затем освобождает шину. Данный длительный период низкого состояния называется сигнал "Сброс".
Если на шине присутствует подчинённый, то он должен в течение 60 мкс после освобождения ведущим шины установить низкий уровень длительностью не менее 60 мкс. Данный отклик носит название "Присутствие". Если такой сигнал не обнаруживается, то ведущий должен полагать, что нет подключённых устройств к шине и дальнейшая связь невозможна.
Данная связка сигналов всегда начинает любой обмен информацией между устройствами.
Помимо этого, нужно учитывать, что любое ведомое устройство после получения питания сразу же выдаёт сигнал присутствия.
Сигнал же "Сброс" позволяет ведущему досрочно завершить обмен информацией – например, если датчик температуры передаёт нам всю свою память, а нам нужны только первые два байта, которые содержат значение температуры, то после получения этих двух байт микросхема просто может опустить линию в ноль на нужное количество времени – датчик поймет, что больше ничего пересылать не нужно.

О реализации: обычно необходимо запрограммировать микроконтроллер как ведущее устройство, поэтому есть несколько советов: микроконтроллеру стоит генерировать сигналы (опускание шины к земле) чуть больше необходимого минимума по времени, а ответы от ведомых устройств ждать по наихудшим прогнозам – тогда взаимодействие по протоколу будет оптимальным.
При этом ведущему нужно не забывать периодически проверять состояние линии данных - то, что она возвращается в подтянутое состояние с течением времени – а то может возникнуть ситуация, например, что какой-нибудь ведомый сломался и коротит, например, линию в ноль – и в принципе, протокол не проверяет данную проблему сам, ошибки может и не возникнуть – но об этом чуть ниже.

Сетевой и транспортный уровни протокола

Рассмотрим "более высокий" уровень протокола 1-Wire – последовательность действий при взаимодействии ведущего и ведомого, а также основные команды. При этом нужно отметить, все данные, в том числе команды, отсылаются побитно последовательно, начиная с младшего бита.

Алгоритм взаимодействия:

  1. Ведущий посылает на линию сигнал reset ("Сброс"). После линия освобождается для "ответных действий". Если на шине присутствует ведомый, то в течение 60 мкс он сообщает о "присутствии".
    Если же ведущий не получает отклика-"присутствия", то он считает, что подключённых к шине устройств нет.
  2. Далее следует сетевой уровень протокола: ведущий должен определить, к какому из устройств на шине данных он будет дальше обращаться. Данный выбор обеспечивается отсылкой одной из ROM-команд (длиной в 1 байт), которые работают с уникальными кодами устройств:
    • Search ROM ($F0) – "поиск ROM". Если коды подключённых устройств не известны, то эта команда позволяет ведущему определить их. Подробное описание данной команды представлено ниже.
    • Read ROM ($33) – "чтение ROM" – команда используется, если мы точно знаем, что у нас только одно подчинённое устройство (например, только один датчик температуры или один домофонный ключ), тогда для считки его кода можно не париться с поиском ROM. При получении данной команды все ведомые устройства на шине отсылают свой уникальный код.
    • Skip ROM ($CC) – "пропуск ROM". Это команда используется, когда необходимо дать команду всем устройствам на шине – например, нужно, чтобы все подключённые датчики одновременно считали температуру.
    • Match ROM ($55) – "совпадение ROM". Используется для выбора конкретного подчинённого устройства на шине. После отсылки команды ведущий передаёт 64-разрядный код. По завершении только тому подчинённому устройству, которое приняло свой идентификатор, разрешается отвечать после приёма следующего импульса сброса – остальные же молча ждут импульса сброса.
    Естественно, для отдельных устройств какие-то ROM-команды могут добавляться.
  3. Если были отправлены команды "Match ROM" или "Skip ROM", то далее ведущий отправляет какую-либо функциональную команду – это уже транспортный уровень протокола; при этом набор функциональных команд и дальнейшее поведение (должен ли ведущий быть готов принимать данные от выбранного ведомого устройства, например) зависит от конкретного устройства 1-Wire.

Так, например, если у нас есть микроконтроллер и DS18S20 – датчик температуры, и мы хотим получить от этого датчика значение температуры, то алгоритм работы будет следующим:

  1. МК отсылает импульс сброса
  2. - так как датчик у нас на линии один, то нам нет необходимости работать с "адресами"
  3. МК отсылает функциональную команду "Convert T" - по этой команде датчик температуры начнёт однократное температурное преобразование; результат же этого преобразования будет записан в память датчика
  4. МК ждёт, пока датчик закончит преобразование (ведомое устройство никоим образом не может само сообщить, что оно "освободилось", поэтому микроконтроллер просто ждёт время, указанное в даташите)
  5. МК отсылает импульс сброса
  6. Датчик отвечает импульсом приветствия
  7. МК отсылает адресную команду "Skip ROM"
  8. МК отсылает функциональную команду "Read Scratchpad" - по этой команде датчик отсылает 9 байт своей памяти
  9. МК считывает нужное количество байт (значение температуры содержится в первых двух)
  10. При необходимости МК завершает сеанс связи, отсылая импульс сброса

При этом нужно помнить, что ведомые устройства могут поломаться и, например, опускать линию всегда на 0. Допустим, у нас так закоротило датчик температуры в термостате печки. Тогда, если ведущий не проверит, что линия возвращается в единицу, то вероятна следующая ситуация:

  1. МК отсылает импульс сброса
  2. Датчик коротит линию на ноль – МК обнаруживает, что есть импульс приветствия
  3. МК отсылает адресную команду "Skip ROM" - не проверяя при этом линию, конечно
  4. МК отсылает функциональную команду "Convert T" - датчик всё ещё в коме
  5. МК ждёт
  6. МК отсылает импульс сброса
  7. история повторяется, датчик отсылает ноль
  8. МК отсылает адресную команду "Skip ROM"
  9. МК отсылает функциональную команду "Read Scratchpad"
  10. МК считывает нужное количество байт - и получает, естественно, все нули. Даже если мы считываем всю память вместе с CRC, CRC от нуля будет равно нулю – то есть ошибки не произойдет МК конвертирует температуру, получает ноль, отправляет команду нагревать печь. И так до бесконечности!

Выглядит все это довольно печально – и черевато большими проблемами! Так что на протокол полагайся, но сам не плошай.

Вернёмся к алгоритму взаимодействия ведущего и ведомого по протоколу. Как видно, реализовать работу ведущего устройства не так уж сложно – при этом есть как уже готовые библиотеки с кодом, так и аппаратные реализации – например, от той же фирмы Maxim Integrated. Так, например, для AVR-ок написан целый даташит для реализации 1-Wire .

А вот реализовать ведомое устройство не так уж просто – и если библиотеки существуют (например, ), то аппаратных реализаций именно протокола 1-Wire мне не встречалось. Принцип же работы ведомых устройств подробно описан в их документации, обычно в виде блок-схемы.

Существует целый ряд устройств, использующих интерфейс 1-Wire, - так, например, всем известная "таблетка" - домофонный ключ – работает в большинстве случаев именно через данный протокол: микроконтроллер в замке просто спрашивает уникальный код "таблетки", и если этот код содержится в списке разрешённых устройств, микроконтроллер открывает замок.

Помимо всевозможных устройств для идентификации и авторизации (ключи, карточки пропуска), многие датчики – будь то датчики температуры, датчики влажности, освещения и др. – также используют для связи интерфейс 1-Wire. Помимо этого, есть также ряд микросхем для "мониторинга, менеджмента, защиты и управления восстановлением заряда автономных источников питания самых различных типов и назначений".

Уникальные коды устройств 1-Wire

Пару слов об уникальных кодах устройств, с которыми и работают ROM-команды. Каждое "одноварное" устройство имеет свой 64-хбитный код, состоящий из трёх частей:

Младший байт – это код семейства, к которому относится устройство, 6 следующих байт – уникальный в семействе серийный номер, ну и наконец, старший байт – это CRC, который служит для проверки правильности приёма всего кода. Так, например, на родных даллосовских (сейчас максимовских) "таблетках" часть уникального кода – а именно, 48-битный серийный номер – пишется на металле в шестнадцатиричном виде (все дружно посмотрели на свои домофонные ключи).

Рассмотрим подробнее, какие коды семейств устройств 1-Wire бывают:

Код семейства (HEX) Устройство iButton Описание
01 DS1990A, DS1990R, DS2401, DS2411 Уникальный серийный номер-ключ
02 DS1991 Мультиключ, 1152-битная защищённая EEPROM
04 DS1994, DS2404 4 КБ NV RAM + часы, таймер и будильник
05 DS2405 Одиночный адресуемый ключ
06 DS1993 4 КБ NV RAM
08 DS1992 1 КБ NV RAM
09 DS1982, DS2502 1 КБ PROM
0A DS1995 16 КБ NV RAM
0B DS1985, DS2505 16 КБ EEPROM
0C DS1996 64 КБ NV RAM
0F DS1986, DS2506 64 КБ EEPROM
10 DS1920, DS1820, DS18S20, DS18B20 Датчик температуры
12 DS2406, DS2407 1 КБ EEPROM + двухканальный адресуемый ключ
14 DS1971, DS2430A 256 бит EEPROM и 64 бита PROM
1A DS1963L 4 КБ NV RAM + счётчик циклов записи
1C DS28E04-100 4 КБ EEPROM + двухканальный адресуемый ключ
1D DS2423 4 КБ NV RAM + внешний счётчик
1F DS2409 Двухканальный адресуемый ключ с возможностью коммутации на возвратную шину
20 DS2450 Четырёхканальный АЦП
21 DS1921G, DS1921H, DS1921Z Термохронный датчик с функцией сбора данных
23 DS1973, DS2433 4 КБ EEPROM
24 DS1904, DS2415 Часы реального времени
26 DS2438 Датчик температуры, АЦП
27 DS2417 Часы реального времени с прерыванием
29 DS2408 Двунаправленный 8-разрядный порт ввода/вывода
2C DS2890 Одноканальный цифровой потенциометр
2D DS1972, DS2431 1 КБ EEPROM
30 DS2760 Датчик температуры, датчик тока, АЦП
37 DS1977 32 КБ защищённой паролем EEPROM
3A DS2413 Двухканальный адресуемый коммутатор
41 DS1922L, DS1922T, DS1923, DS2422 Термохронные и гигрохронные датчики высокого разрешения с функцией сбора данных
42 DS28EA00 Цифровой термометр с программируемым разрешением, возможностью работать в режиме подключения к последовательному каналу и программируемыми портами ввода/вывода
43 DS28EC20 20 КБ EEPROM

NV RAM – Non-Volatile Random-Access Memory (энергонезависимое ОЗУ)
PROM – Programmable Read-Only Memory (однократно программируемое ПЗУ)
EEPROM – Electrically Erasable Programmable Random-Access Memory (электрически стираемое перепрограммируемое ПЗУ)



Новое на сайте

>

Самое популярное