Домой Проекты домов Использование золы-уноса в производстве бетона. Зола уноса: описание, состав, гост, особенности применения и отзывы Замена песка золой уноса в ячеистых бетонах

Использование золы-уноса в производстве бетона. Зола уноса: описание, состав, гост, особенности применения и отзывы Замена песка золой уноса в ячеистых бетонах

Исследованиями и практикой установлена эффективность введения сухих пылевидных зол при изготовлении бетонных и растворных смесей в качестве активных минеральных добавок и микронаполнителей.

Бетонные смеси с золами обладают большей связностью, лучшей перекачиваемостью, меньшим водоотделением и расслоением. Бетон имеет при этом большую прочность, плотность, водонепроницаемость, стойкость к некоторым видам коррозии, меньшую теплопроводность.

Наиболее эффективны как активные добавки в бетонах кислые золы, не обладающие вяжущими свойствами; их пуццоланическая активность проявляется во взаимодействии с цементным вяжущим. В зависимости от этой характеристики по отношению к конкретному цементу, водопотребности и удобоукладываемости бетонной смеси, условий и длительности твердения удается существенно сократить расход цемента.

Оптимальное содержание золы (кг/м3), составляет для бетонов: пропариваемого - около 150; нормального твердения - 100. В соответствии с известными рекомендациями применение 150 кг золы-уноса на 1 м3 тяжелого бетона классов В7,5-ВЗО позволяет сэкономить 40-80 кг цемента. В бетонах, подвергаемых тепловой обработке, применение золы дает возможность экономить до 25% цемента.

Значительный практический опыт применения золы-уноса в бетонах накоплен в гидротехническом строительстве. В настоящее время доказана эффективность замены 25-30% портландцемента золой-уносом для бетонов внутренних зон массивных гидротехнических сооружений и 15-20% для бетона в подводных частях сооружений. В ряде случаев обоснована целесообразность увеличения содержания в гидротехническом бетоне золы-уноса до 50-60% от массы цемента. При замене золой до 40% цемента при их совместным измельчением прочность бетона через 28 сут близка, а через 60 сут практически равна прочности бетона без добавки.

Впервые в 1961 г. произведена опытно-производственная укладка бетона с добавкой 15-20% золы-уноса в тело плотины Братской ГЭС. Было уложено около 5000 м3 бетона с золой, который по основным физико-механическим характеристикам не отличался от бетона без добавки золы.

При строительстве Днестровского гидроузла введение в вяжущее 25% золы не снизило прочностные показатели гидротехнического бетона в возрасте 180 сут и позволило повысить коэффициент эффективности использования цемента.

В настоящее время все шире применяется зола-унос в производстве сборных железобетонных конструкций. Сухую золу вводят в бетон классов В7,5-В40 в количестве до 20-30% от массы цемента. Однако при чрезмерном содержании золы возможно вспучивание поверхности пропариваемых изделий.

Одной из существенных характеристик золы как активной минеральной добавки в бетон является ее гидравлическая активность. Традиционными методами она определяется по способности зол поглощать известь из известкового раствора, а также проявлять вяжущие свойства в сочетании с гидратной известью. Ускоренным методом определения активности зол является микрокалориметрический метод, в соответствии с которым активность золы определяется по величине теплоты ее смачивания в полярных и неполярных жидкостях, учитывая коэффициент гидрофильное™ и ряд других параметров.

Требования к золам, как к активным минеральным добавкам в бетонную смесь, обусловлены физико-химическим механизмом их влияния на процессы твердения и структурообразования бетона. Гидравлическая активность зол, как и других веществ пуццоланового типа, в значительной мере обусловлена химическим взаимодействием входящих в них оксидов кремния и алюминия с гидроксидом кальция, выделяющимся при гидролизе клинкерных минералов, с образованием гидросиликатов и гидроалюминатов кальция. Гидратации зол способствует их стекловидная фаза, кристаллическая фаза в этом процессе практически инертна. Химическая активность зол непосредственно связана также с их дисперсностью.

По современным представлениям прочность цементов и бетонов с добавкой золы зависит от толщины затронутого химическими процессами поверхностного слоя зольной частицы.

Положительному влиянию золы на структурообразование бетона способствует также «эффект мелких порошков», расширяющих свободное пространство, в котором осаждаются продукты гидратации, что ускоряет процесс твердения цемента.

Действующие нормативные документы разрешают применять золу-унос в качестве добавки для приготовления бетонов сборных и монолитных конструкций зданий и сооружений, кроме конструкций, эксплуатируемых в средах со средней и сильной агрессивностью.

В зависимости от области применения золу подразделяют на виды: I - для железобетонных конструкций и изделий; II - для бетонных конструкций и изделий; III - для конструкций гидротехнических сооружений. В пределах отдельных видов дополнительно выделяют классы золы для бетонов: А - тяжелого; Б - легкого.

Удельная поверхность золы класса А должна быть не менее 2800 см2/г, а класса Б - 1500-4000 см2/г. Остаток на сите № 008 для золы класса А не должен превышать 15% по массе. По химическому составу к золе предъявляют требования, указанные в табл. 3.13. Влажность золы сухого отбора должна быть не более 3%.

Для применения в бетонах образцы из смеси золы и цемента проверяют кипячением в воде на равномерность изменения объема.

Подбор составов бетона с добавкой золы заключается в определении такого соотношения компонентов, включая золу, при котором требуемые свойства бетонной смеси и бетона достигаются при минимальном расходе цемента. В бетонной смеси зола выполняет роль не только активной минеральной добавки, увеличивающей количество вяжущего, но и микронаполнителя, улучшающего гранулометрию песка и активно влияющего на процессы структурообразования бетона. Учитывая полифункциональный характер зольной добавки, введение ее лишь взамен части цемента или части песка не позволяет решить задачу оптимизации составов.

Уменьшение расхода цемента при введении золы-унос прежде всего целесообразно при «излишней активности» цемента, т. е. в тех случаях, когда марка применяемого цемента выше рекомендуемой. При применении золы ТЭС допускается снижение минимальной типовой нормы расхода цемента для неармированных бетонных изделий до 150 кг/м3, а для армированных железобетонных - до 180 кг/м3. Суммарный расход цемента и золы при этом должен быть соответственно не менее 200 и 220 кг/м3. Количество золы назначается пропорционально требуемому проценту снижения «излишней активности» цемента.

Введение золы-унос в оптимальном количестве не повышает во-допотребность бетонных смесей, что объясняется оплавленностью и относительно правильной формой зерен. При высокой дисперсности золы и незначительном содержании в ней несгоревшего угля удо-боукладываемость смеси повышается. Пластифицирующий эффект золы повышается при наличии в бетонной смеси мелкого заполнителя с недостаточным количеством тонких фракций.

Ряд исследователей считают, что шарообразные частицы золы могут рассматриваться как твердые «шарикоподшипники» в смеси, они аналогично пузырькам эмульгированного воздуха при использовании воздухововлекающих добавок оказывают пластифицирующее действие на бетонную смесь.

Повышение дисперсности зол и снижение их водопотребности могут быть достигнуты отбором их из последних полей электрофильтров или помолом, разрушающим входящие в них органоминеральные агрегаты .

Введение золы-уноса способствует снижению водоотделения бетонной смеси . Пластифицирующая и водоудерживающая способность золы обусловливает перспективность ее применения в литых бетонах.

Бетонные смеси с оптимальной добавкой золы имеют достаточно высокую жизнеспособность и пригодны для транспортирования на дальние расстояния.

Влияние золы на прочность бетона зависит от ее свойств и дисперсности, содержания и химико-минералогического состава цемента, возраста и условий обработки бетона. Для оценки влияния золы на прочность бетона введено понятие ее «цементирующей эффективности», которое характеризуется коэффициентом Кц э.

Цементирующая эффективность золы-уноса характеризует количество цемента в кг. заменяемое без снижения прочности бетона 1 кг золы. Установлено, что подобно известному в технологии бетона правилу цементно-водного (или водоцементного) отношения, констатирующему однозначную связь данного параметра с прочностью бетона, справедливо правило приведенного Ц/В.

Определив значение (Ц/В)пр и задав оптимальное содержание золы с известным значением Кц э, можно найти требуемое (Ц/В) золосодер-жащих бетонов и проектировать их составы.

Большинство исследователей отмечают положительное влияние повышения дисперсности золы на прочность бетона. Установлено, что активность золы существенно повышается при доведении размеров ее частиц до 5-30 мкм. Произведение удельной поверхности золы на содержание в ней стекловидной фазы близко к коэффициенту К в формуле Фере, с которым прямо пропорционально связана прочность бетона. В соответствии с формулой Фере прочность бетона на сжатие в возрасте 28 сут:

где Vu - объем цемента; VB - объем воды; А - объем воздуха.

Исследовав прочность растворов из цементов, полученных смешиванием клинкера и золы, измельченных до значений удельной поверхности 2500-6400 и 3000-8000 см2/г соответственно, М. Венюа установил необходимое соответствие между гранулометрическим составом золы и тонкостью помола клинкера. Наиболее значительно повышение дисперсности золы сказывается на прочности бетона в раннем возрасте.

По сравнению с раздельным помолом лучшие результаты получены при совместном измельчении цемента и золы. Совместный помол позволил обосновать возможность получения трехкомпонентного вяжущего (35% цемента - 25 золы - 40 шлака), прочность которого при сжатии составляет через 60 сут - 84, при растяжении - 90% прочности бетона на цементе без добавок.

Значительный эффект от повышения дисперсности наблюдается после тепловлажностной обработки бетона, которой к 28-суточному возрасту ослабляется.

Характерно, что влияние дисперсности золы на прочность бетона проявляется заметно сильнее, чем цемента. Это обусловлено пластифицирующим эффектом тонких фракций золы на бетонные смеси, несмотря на возможное при этом увеличение нормальной густоты золосодержащих элементов. Домол даже малоактивных зол до 4000- 5000 см2Д позволяет сэкономить 20-30% цемента без снижения класса бетона. Более целесообразным является мокрый домол, при котором золу не подсушивают и достигается более высокая дисперсность.

В ранние сроки твердения (до 28 сут), особенно при введении гру-бодисперсной золы, прочность бетона снижается, хотя и не пропорционально количеству добавки, затем наблюдается выравнивание, а иногда и более высокая прочность в бетонах с зольной добавкой.

Для достижения высокой прочности золосодержащих бетонов определенное значение имеет химико-минералогический состав клинкера. В раннем возрасте росту прочности бетона способствует повышенное содержание в клинкере щелочей, ускоряющих химическое взаимодействие золы и цемента; в более позднем - для проявления пуццолановой реакции золы предпочтительнее цементы с повышенным содержанием алита, которые при гидролизе образуют повышенную концентрацию Са(ОН)2.

Прочность золосодержащего бетона, пропаренного при 95 °С, на 12-15% превышает прочность бетона, пропаренного при 80 °С. Повышение температуры позволяет на 1-2 ч сократить время тепловой обработки.

Для бетонов с добавкой золы характерен сравнительно интенсивный рост прочности в поздние сроки твердения. По данным японских исследователей, прочность при сжатии бетонов, содержащих 190 и 240 кг/м3 цемента и 30%-ную добавку золы в 10-летнем возрасте, соответственно в 1,44 и 1,43 раза превышает прочность бетона в возрасте 3 мес. Отмечается возможность и более интенсивного роста прочности при сжатии. При испытании кернов из бетонного дорожного покрытия, в котором 30% цемента заменено золой, наблюдалась прочность при сжатии 37 МПа через 3 мес и 61 МПа - через 9,5 лет.

Из данной таблицы видно, что в период 28-180 сут интенсивность роста прочности при сжатии золосодержащих бетонов примерно такая же или выше, чем у бетонов, не содержащих золу.

В некоторых работах отмечается, что при длительном твердении интенсивно растет прочность золосодержащих бетонов не только при сжатии, но также при растяжении и изгибе. Образцы в виде стержней и брусков, вырезанных из опытной бетонной кладки, показали прочность при изгибе золосодержащих бетонов через 3 мес. - 80, а через 10 лет - 150% прочности контрольного бетона. У бетонов с золой, так же как и с другими активными минеральными добавками, более высокое отношение прочности на растяжение к прочности на сжатие.

Представляет интерес влияние на прочность бетона добавок ускорителей твердения, в частности хлорида кальция. В одной из работ отмечается, что введение 1,2-1,5% хлорида кальция от массы смешанного вяжущего позволило увеличить прочность золосодержащего бетона в 7-суточном возрасте на 18-25%, а в возрасте 28 сут - на 10- 15%.

Замещение части цемента золой приводит к уменьшению усадочных деформаций бетона, которое проявляется при снижении водопотребности бетонной смеси. Уменьшение усадки объясняется тем, что зола адсорбирует из цемента растворимые щелочи и образует устойчивые, нерастворимые алюмосиликаты.

Зола способствует повышению сульфатостойкосги цементных бетонов так же, как и другие активные минеральные добавки. Результаты 10-летних испытаний показали, что бетон, содержащий зольный цемент, более стоек к воздействию морской воды даже по сравнению с бетоном на шлакопортландцементе.

Наиболее значительное улучшение сульфатостойкости отмечалось для бетонов на портландцементе с высоким содержанием С3А. Наилучшие результаты отмечены для бетонов при введении зол с наибольшим содержанием Si02 + А1203, т. е. наиболее кислых по химическому составу. Незначительно отражается добавка золы на стойкости бетона к углекислой, общекислотной и магнезиальной агрессии.

По рекомендациям НИИЖБ при использовании в бетонной смеси реакционноспособных заполнителей, содержащих опал, халцедон, кремниевые сланцы, вулканические туфы и т. п., зола может быть применена лишь в том случае, если суммарное содержание щелочных оксидов в вяжущем в перерасчете на Na20 будет не более 0,6% по массе. В золах сухого отбора обычно содержится 1-5% щелочных оксидов, использование их в смесях с реакционно-способными заполнителями возможно при добавке в практически бесщелочные цементы. В то же время ряд исследований показал, что замещение цемента всеми видами золы уменьшает взаимодействие между щелочами и заполнителями. Верхний допустимый предел возможного суммарного содержания щелочных оксидов в цементно-зольном вяжущем рекомендуется 1,5%.

Снижение расхода цемента при введении в бетонную смесь золы приводит к уменьшению тепловыделения бетона и его разогрева в начальный период. Детальные исследования применения зольных цементов в гидротехнических бетонах показали, что тепловыделение в бетоне на цементах с 25% золы Иркутской и Красноярской ТЭЦ на 15-25% ниже тепловыделения бетона на цементе без добавок.

Введение в состав цементов или непосредственно в бетонные смеси значительного количества минеральных добавок для уменьшения тепловыделения оправдан лишь в тех случаях, когда они не вызывают повышения водопотребности. К таким добавкам, наряду с доменным шлаком, относится зола. При использовании золы-унос наблюдается 50%-ное уменьшение экзотермии твердеющего бетона в возрасте 28сут.

В мировой практике гидротехнического строительства имеется множество примеров, когда введение золы положительно сказалось на термической трещиностойкости массивных бетонных сооружений. При укладке бетонной смеси с добавкой 15% золы от массы вяжущего, например, на строительстве Братской ГЭС разогрев бетона в блоках был примерно на 6 °С ниже, чем без добавки.

Зола, как и другие активные минеральные добавки, при умеренном содержании в бетонной смеси повышает водонепроницаемость бетона. Это объясняется гидравлическими свойствами зол и повышением плотности бетона. Значительно повышает водонепроницаемость введение в бетон воздухововлекающей добавки СНВ и хлористого кальция. Наиболее эффективным оказалось совместное введение двух добавок. Водонепроницаемость бетона в этом случае повышается уже в возрасте 28 сут до W12.

К отрицательным последствиям введения золы в бетонную смесь можно отнести снижение стойкости к истиранию и кавитации.

Добавка золы в бетон не рекомендуется при производстве работ в осенне-зимний период методом «термоса», так как она замедляет твердение бетона при низких температурах. При строительстве в районах с жарким и сухим климатом уход за бетоном, имеющим в своем составе золу, должен быть более длительным, чем в районах с умеренным климатом.

Как и другие гидравлические добавки, зола-унос снижает морозо-и воздухостойкость бетона. В бетонах морозостойкостью F50 и выше или подвергаемых попеременному увлажнению и высушиванию возможность применения золы устанавливается специальными исследованиями. Снижение морозостойкости бетона можно компенсировать введением воздухововлекающих добавок.

Степень снижения морозостойкости бетонов при введение в них зол различна и зависит от их характеристик. К значительному разбросу основных физико-механических свойств бетона, в том числе и морозостойкости, приводит неоднородность состава и свойств золы-уноса.

Результаты долгосрочных испытаний показали, что при использовании золы не должно возникать особых опасений из-за коррозии стальной арматуры, если соблюдены общие требования, предъявляемые к проектированию и изготовлению железобетона.

Испытания бетонов длительными нагрузками показали, что введение золы значительно снижает ползучесть бетона. Так, при испытании в течение 240 сут ползучесть бетона с добавкой золы-уноса оказалась на 34,5% ниже показателя контрольного бетона. При введении добавки ПАВ деформации ползучести золосодержащих бетонов мало отличаются от деформаций бетонов без золы. После испытаний бетона с ЛСТ в течение 300 сут ползучесть при отсутствии добавок золы составила 59,2 Ю-5 и 59,5 10~5 при 20% золы.

Исследованиями выявлено, что золы снижают коэффициент линейного температурного расширения растворной части бетона в воздушно-сухом состоянии, приближая его к значениям, которые характерны для заполнителей. Так, при температуре 20 °С коэффициент линейного расширения для обычных растворов равен 8,8, растворов с 25% золы и добавкой ПАВ - 5,8, гранита - 3,8. Эти данные показывают, что введение золы в бетон должно повышать его термическую трещиностойкость в условиях нагревания и охлаждения.

Вследствие сравнительно невысокой водопотребности бетонных смесей замена до 20% цемента золой практически не отражается на усадочных деформациях бетона при твердении его на воздухе.

Накоплен положительный опыт по применению литых золосодержащих бетонных смесей в монолитных тонкостенных железобетонных конструкциях. В состав бетона вводят 100-150 кг/м3 золы и пластифицирующую добавку. Бетоны из литых смесей с добавкой золы имеют достаточно высокие физико-механические свойства, а конструкции из них - хорошее качество поверхности. Пластичность бетонных смесей благодаря введению в их состав золы существенно увеличивается.

Типовая технологическая линия по производству бетонной смеси с добавкой золы-уноса (3.5) включает приемное устройство, склад, расходный бункер и дозатор. Золу доставляют железнодорожным транспортом в вагонах типа «Хоппер». Возможна ее доставка и другими специальными транспортными средствами.

После разгрузки золы сжатый воздух подается в емкость для аэрирования и создания необходимого давления, а также в смесительное отделение для образования воздушной среды определенной расчетной концентрации. Взрыхленная сжатым воздухом аэрированная зола поступает под действием разности давлений в смесительную камеру, откуда по транспортному трубопроводу - на склад. Рабочее давление сжатого воздуха на входе трубопровода пневмосистемы зависит от концентрации золы-уноса и дальности подачи.

С помощью распределительного устройства, входящего в комплект установки, золу-унос распределяют по сил осам. Для очистки воздуха, выходящего из силосов, предусмотрены фильтры и циклоны, под которыми установлены пылесборнйки. Пыль отсасывается и транспортируется на склад. При помощи струйных или камерных насосов зола подается в бункер-осадитель, установленный в надбункерном отделении бетоносмесительного узла, а затем в расходные бункеры.

Механизмы тракта подачи золы выключаются автоматически по сигналу указателя уровня, установленного в расходном бункере. Нео-севшая зола вместе с воздухом попадает в циклоны, где смесь вторично очищается и осаждается. Из дозатора зола подается непосредственно в бетоносмеситель. Воздух, поступающий в приемное устройство и струйный насос, проходит масловодоочистку. При использовании неочищенного воздуха зола налипает на стенки трубопроводов и вся система выходит из строя.

Таким образом, для хранения, транспортировки и дозирования золы сухого отбора применяют, в основном, такие же технологическое оборудование и транспортные средства, что и для цемента.

Строительные растворы. Золу применяют в качестве компонента строительных растворов, в котором сочетаются свойства минеральной добавки, пластификатора и микронаполнителя. Зола улучшает пластичность и водоудерживающую способность растворных смесей, свойства затвердевших растворов. При применении в растворах тонкодисперсных зол, отбираемых с последних полей электрофильтров, существенно снижается расход вяжущих. Применение золы как добавки рационально при получении эффективных растворов для каменной кладки и возведения стен из крупноразмерных элементов. Однако растворы с добавкой золы не следует применять в зимнее время в связи с замедленным темпом их твердения при пониженной температуре.

В строительных растворах применяют как сухую золу, так и золу гидроудаления.

В цементных растворах оптимальное содержание золы рекомендуется 100-200 кг/м3, при этом в «тощих» малоцементных растворах оно составляет 80-125% массы цемента, в более «жирных» - 40-50%. При расходе цемента более 400 кг/м3 введение золы в состав раствора малоэффективно. Тонкодисперсная зола-унос может применяться взамен части цемента и песка. Крупнодисперсную золу рационально применять вместо части песка без изменения расхода цемента.

При применении золы-уноса в цементных растворах необходимый расход цемента обычно снижается на 30-50 кг/м3 при одновременном улучшении удобоукладываемости растворной смеси. Перерасход цемента при полной замене песка золой устраняется добавкой небольшого количества известкового теста.

При полной замене песка золой повышаются деформации усадки во времени и деформации при попеременном увлажнении и высушивании. Они в 2-3 раза выше, чем у цементно-песчаных растворов.

В цементно-известковых растворах золой можно заменять часть цемента, извести или песка. При этом экономится до 30-50 кг цемента и 40-70 кг известкового теста на 1 м3 раствора без ухудшения удобоукладываемости и прочности.

Цементно-известково-зольные растворы характеризуются весьма низкой расслаиваемостью. Их применяют так же, как и растворы, без добавки золы, в основном для кладки надземных частей зданий.

В известковых растворах применением золы-уноса возможно снизить на 50% расход известкового теста без понижения прочности и ухудшения других свойств. При замене 50% извести удвоенным по массе количеством золы-уноса достигается не только экономия извести, но и повышается прочность раствора. Без применения цемента на известково-зольном вяжущем можно получать растворы марки М25 и выше.

Подбор составов золосодержащих растворов производят в два этапа. Вначале определяют расход составляющих раствора в килограммах на 1 м3 без добавки золы, а затем уточняют его, учитывая введение золы, предполагая при этом, что средняя плотность раствора увеличивается на 20-40 кг/м3, а водопотребность растворных смесей не изменяется.

Технология приготовления растворов с добавкой золы состоит из дозирования исходных компонентов по массе и перемешивания затем их в растворосмесителях в течение 3-5 мин до получения однородной смеси.

Золу можно использовать и в различных отделочных составах. Например, для шпаклевки внутренних поверхностей на стройках в массовых масштабах применяют так называемую «беспесчанку», представляющую собой гипсовое тесто с замедлителем схватывания. Замена золой 30 - 50% гипса не только не ухудшает качество этой шпаклевки, но даже несколько сокращает расход замедлителя.

Золу применяют в цементных растворах, служащих для заделки трещин в железобетонных конструкциях, в том числе и массивных. При этом определяющее значение имеют хорошая перекачиваемость растворов, их связность, стабильность свойств во времени, уменьшение водоотделения и сегрегации (расслоения). Зола, используемая в таких растворах, должна иметь определенные ограничения по крупности: остаток на сите 45 мкм должен составлять от 12,5 до 30%; для замоноличивания крупных полостей, выработок и т. п. можно применять золу, характеризующуюся остатком на сите 45 мкм, доходящим до 60%.

Ячеистые бетоны. Шлаковые и зольные вяжущие, как показал многолетний опыт, с успехом могут заменять в производстве ячеистобе-тонных изделий известково-кремнеземистые и известково-цементные вяжущие. Молотые топливные шлаки и пылевидные золы позволяют также заменить тонкодисперсный кварцевый песок в составе ячеисто-бетонных изделий. Наряду с автоклавной технологией при применении шлакозольных вяжущих повышенной активности представляется возможным получение ячеистых бетонов в условиях пропаривания при атмосферном давлении. В композиции с портландцементом применение высокодисперсных зол и шлаков способствует твердению ячеистых бетонов и без тепловой обработки.

Зола и золошлаковые смеси в производстве ячеистых бетонов могут использоваться как в сухом виде, так и в виде шлама

На основе бесклинкерных и малоклинкерных шлаковых вяжущих при мокром и сухом помоле, как установлено в МИСИ им. В.В. Куйбышева, возможно получение ячеистых бетонов с прочностью при сжатии 8-12 МПа при плотности 1000-1200 кг/м3, 6-9 МПа при 800-1000 кг/м3, 4-5,5 МПа при 600-700 кг/м3 и 1-2,5 МПа при плотности 300-500 кг/м3. Верхние значения прочности относятся к ячеистым бетонам, изготовленным на основе высоко- и среднекаль-циевых гранулированных шлаков, а также на основе кислых гранулированных шлаков и золы-уноса с добавкой 50-75 кг/м3 портландцемента.

Замена тонкомолотого известково-песчаного вяжущего известко-во-шлаковым или зольным позволяет снизить расход извести 2- 3 раза.

Для производства безавтоклавных газозолошлаковых бетонов желательно применение цемента с повышенным содержанием активных минералов - алита и трехкальциевого алюмината. При изготовлении автоклавных ячеистых бетонов возможно применение цементов с пониженной активностью, в том числе шлакопортландцемента и пуц-цоланового портландцемента.

Ячеистый золобетон является разновидностью ячеистых бетонов, в которых зола выполняет роль кремнеземистого компонента. По сравнению с обычным кремнеземистым компонентом - молотым кварцевым песком - зола обладает более высокой реакционной способностью, требует значительно меньших (а при достаточной дисперсности вообще не требует) затрат на измельчение и позволяет получать ячеистый бетон меньшей средней плотности. Недостатки золы как кремнеземистого компонента следующие: меньшее, чем в кварцевом песке, содержание Si02; наличие несгоревшего топлива и нестабильность химического состава. Технологические требования к золе, применяемой в ячеистых бетонах, таковы: содержание стекловидных и оплавленных частиц должно составлять не менее 50%, несгоревших частиц бурого угля - не более 3%, каменного - не более 5%; удельная поверхность 3000-5000 см2/г; набухание в воде не должно превышать 5%.

С применением золы-уноса выпускается пока примерно 10% общего объема производства ячеистобетонных изделий, причем значительную часть от этого количества составляют изделия, изготовляемые на базе сланцевой золы. Эффективное использование сланцевой золы обусловлено ее химико-минералогическим составом (свободный оксид кальция - 15-25%, клинкерные минералы - 10-15%, ангидрит -7-10%, активное стекло -30-35%), а также комплексом технологических приемов, в результате которых обеспечивается гидратация свободного оксида кальция в виде пережога до автоклавной обработки (тонкий помол золы, литьевой способ формования и выдерживания сырца при повышенной температуре в условиях, исключающих большие температурные перепады). Сланцевая пылевидная зола должна содержать оксид кальция в количестве не менее 35%, в том числе свободного СаО - не менее 15-25%, в ней недопустимо более 6% S03 и 3% (К20 + Na20).

Ячеистые бетоны с применением золы в основном выпускают в виде газозолобетонов со средней плотностью 400-1200 кг/м3. Из них изготавливают теплоизоляционные изделия, панели, блоки и плиты для наружных стен, покрытий, межэтажных перекрытий и внутренних перегородок (3.7).

Самым распространенным способом формования ячеистых золо-бетонов является литьевой, когда в формы заливается смесь, содержащая 50-60% воды. Основные недостатки литьевого формования: недостаточная газоудерживающая способность смеси; неоднородная плотность изделий по высоте; медленное твердение; повышенная влажность изделий после тепловой обработки и большая усадка.

Более приемлемой для производства газобетона является комплексная вибрационная технология, позволяющая за счет эффекта разжижения смеси при вибрации в процессе перемешивания и формования уменьшить количество воды затворения на 25-30%. При этом по сравнению с литьевым способом прочность газобетона возрастает на 15-25%, а усадочные деформации снижаются на 25-30%. Армирование ячеистой структуры газобетона волокнами асбеста, минеральной ваты и другими волокнами способствует снижению усадки и повышению трещиностойкости бетона. Эффективно введение в состав ячеистобетонных смесей крупного пористого заполнителя - шлаковой пемзы, керамзита, аглопорита и др., а также применение смесей с добавками поверхностно-активных веществ.

Прочность ячеистых золобетонов при сжатии составляет 0,5- 15 МПа при средней плотности 400-1200 кг/м3, а морозостойкость достигает 150 циклов. Ячеистые золобетоны на цементе имеют значительно большую стойкость, чем на извести. Негативной особенностью золобетонов является их способность к высокому сорбционно-му увлажнению, вызываемому значительной микропористостью золы. Они отличаются также большей чувствительностью к циклическому увлажнению и высушиванию, чем кирпич или тяжелый бетон. Для защиты от агрессивного воздействия атмосферы на изделия из ячеистых золобетонов наносят различные покрытия.

Экономическая эффективность ячеистых золобетонов обусловлена заменой золой песка, уменьшением в 1,2-1,5 раза расхода известкового вяжущего по сравнению с известково-песчаным и сокращением примерно в 2 раза капитальных вложений на добычу и переработку исходного сырья.

Разработана технология получения золощелочных ячеистых бетонов для устройства теплоизоляции в гражданских, общественных и промышленных зданиях. В результате проведенных исследований был получен ячеистый бетон на жидком стекле и каустифицированном содовом плаве. В качестве исходных материалов использовались зола-унос Ладыженской ГРЭС и растворимый силикат натрия. Образцы ячеистого бетона изготавливались по литьевой технологии путем смешивания золы-уноса с щелочным затворителем с последующим введением в смесь порообразователя, в качестве которого использовалась водная суспензия алюминиевой пудры. Для эмульгирования алюминиевой пудры применялись сульфанол, хозяйственное мыло. Скорость вспучивания ячеистой смеси регулировалась путем добавления едкого натра, а время схватывания - добавкой извести. Изделия из ячеистого бетона подвергались сушке при температуре 60-80 °С в течение 6-10 ч. После сушки образцы приобретают водостойкость и прочность 40-60% от марочной. При хранении в сухом состоянии прочность ячеистого бетона имеет тенденцию к возрастанию.

Для приготовления ячеистого бетона использовался каустифици-рованный содовый плав, полученный путем варки при 80-90 °С содового плава и известкового молока плотностью 1,2 г/см3. Для регулирования интенсивности взаимодействия алюминиевой пудры со щелочным компонентом в состав порообразователя вводили гидрофобные вещества (отработанное машинное масло, олеиновую кислоту), пластификатор ЛСТ, минеральный порошок. Было установлено, что в отличие от ячеистых бетонов на жидком стекле, оптимальные условия твердения бетонов на каустифицированном плаве создаются при тепловлажностной обработке.

Во время сгорания топлива образуются отходы, которые называются золами уноса. Рядом с топками устанавливаются специальные устройства, улавливающие эти частицы. Они представляют собой дисперсионный материал, имеющий составляющие размером менее 0,3 мм.

Что такое золы уноса?

Зола уноса - тонкодисперсный материал с небольшими размерами частиц. Образуется она при сжигании твердого топлива в условиях повышенных температур (+800 градусов). В ней находится до 6 % несгоревшего до конца вещества и железо.

Образуется зола уноса при сжигании минеральных примесей, которые находятся в топливе. Для различных веществ содержание ее неодинаковое. К примеру, в дровах содержание золы уноса всего 0,5-2 %, в топливном торфе 2-30 %, а в буром и каменном угле 1 - 45 %.

Получение

Золы уноса образуются во время сгорания топлива. Свойства вещества, полученного в котлах, отличаются от тех, которые создают в лаборатории. Эти отличия затрагивают физико-химические характеристики и состав. В частности, при сжигании в топке происходит расплавление минеральных веществ топлива, что приводит к появлению компонентов недогоревшего композита. Такой процесс, который называется механическим недожогом, связан с увеличением в топке температуры до 800 градусов и выше.

Для улавливания золы уноса необходимы специальные устройства, которые могут быть двух видов: механические и электрические. При работе ГЗУ затрачивается большое количество воды (10-50 м 3 воды на 1 тонну золошлаков). Это является существенным недостатком. Чтобы выйти из такой ситуации, используют оборотную систему: вода после очищения от частичек золы повторно поступает в основной механизм.

Основные характеристики

  • Удобоукладываемость. Чем мельче частицы, тем больше влияние золы уноса. Добавление золы повышает однородность бетонной смеси и ее плотность, улучшает укладку, а также уменьшает расход воды затворения при одинаковой удобоукладываемости.
  • Снижение теплоты гидратации, что особенно важно в жаркое время года. Содержание золы в растворе пропорционально уменьшению теплоты гидратации.
  • Капиллярное поглощение. При добавлении 10 % золы уноса к цементу увеличивается капиллярное поглощение воды на 10-20 %. Это, в свою очередь, уменьшает морозостойкость. Для устранения этого недостатка необходимо незначительно увеличить воздухововлечение за счет специальных добавок.
  • Устойчивость в агрессивной воде. Цементы, которые на 20 % состоят из золы, более стойки к погружению в агрессивную воду.

Плюсы и минусы использования зол уноса

Добавка к смеси в виде золы уноса влечет за собой ряд преимуществ:

  • Снижается расход клинкера.
  • Улучшается помол.
  • Повышается прочность.
  • Улучшается удобоукладываемость, что облегчает распалубку.
  • Снижается усадка.
  • Уменьшается выделение тепла при гидратации.
  • Увеличивается время до появления трещин.
  • Улучшается устойчивость к воде (как чистой, так и агрессивной).
  • Уменьшается масса раствора.
  • Увеличивается огнестойкость.

Наряду с преимуществами, существуют и некоторые недостатки:

  • Добавление золы с большим содержанием недожога изменяет цвет раствора цемента.
  • Уменьшает начальную прочность при низких температурах.
  • Снижает морозостойкость.
  • Увеличивается число компонентов смеси, которые необходимо контролировать.

Виды золы уноса

Существуют несколько классификаций, по которым можно разделить золы уноса.

По виду топлива, которое сжигается, золы могут быть:

  • Антрацитовые.
  • Каменноугольные.
  • Буроугольные.

По своему составу золы бывают:

  • Кислые (с содержанием оксида кальция до 10 %).
  • Основные (содержание выше 10 %).

В зависимости от качества и дальнейшего применения выделяют 4 типа золы - от I до IV. Причем зола последнего вида используется для бетонных конструкций, которые применяются в тяжелых условиях.

Переработка золы уноса

Для целей промышленности чаще всего используется необработанная зола уноса (без помола, просеивания и так далее).

При сгорании топлива образуется зола. Легкие и мелкие частицы за счет движения дымовых газов уносятся из топки и улавливаются специальными фильтрами в золосборники. Эти частицы и являются золой уноса. Оставшаяся часть именуется золой сухого отбора.

Соотношение между указанными фракциями зависит от вида топлива и конструктивных особенностей самой топки:

  • при твердом удалении в шлаке остается 10-20 % золы;
  • при жидком шлакоудалении - 20-40 %;
  • в топках циклонного типа - до 90%.

При переработке в воздух могут попадать частицы шлака, сажи и золы.

Зола уноса сухого отбора всегда сортируется по фракциям под воздействием электрических полей, которые создаются в фильтрах. Поэтому она является наиболее пригодной для применения.

Для снижения потерь вещества во время прокаливания (до 5 %) золу уноса в обязательном порядке гомогенизируют и сортируют по фракциям. Зола, которая образуется после сжигания малореакционных углей, содержит до 25 % горючей смеси. Поэтому ее дополнительно обогащают и используют как энергетическое топливо.

Где используются золы уноса?

Золы широко применяются в различных сферах жизни. Это может быть строительство, сельское хозяйство, промышленность, санитарная обработка

В производстве отдельных видов бетона используется зола уноса. Применение зависит от ее вида. Гранулированную золу применяют в дорожном строительстве для основания парковок, площадок хранения ТБО, велосипедных дорожек, набережных.

Зола уноса сухого улавливания используется для укрепления грунтов как самостоятельное вяжущее и быстро твердеющее вещество. Ее также можно применять для строительства дамб, плотин и других

Для производства золу используют в качестве заменителя цемента (до 25 %). Как заполнитель (мелкий и крупный) золу включают в процесс при производстве шлакобетона и блоков, применяемых при возведении стен.

Широко используется при производстве пенобетона. Добавление золы в пенобетонную смесь увеличивает ее агрегативную устойчивость.

Золы в сельском хозяйстве используются как калийные удобрения. В них содержится калий в виде поташа, который легко растворяется в воде и доступен для растений. Кроме этого, зола богата и другими полезными веществами: фосфором, магнием, серой, кальцием, марганцем, бором, микро- и макроэлементами. Наличие углекислого кальция позволяет использовать золу для снижения кислотности почв. Золу можно вносить под различные культуры в огороде после вспашки, удобрять ею пристволовые круги деревьев и кустарников, а также подсыпать луга и пастбища. Не рекомендуется использование золы одновременно с другими органическими или минеральными удобрениями (особенно фосфорными).

Зола используется для санитарной обработки в условиях отсутствия воды. Она увеличивает уровень рН и убивает микроорганизмы. Ее применяют в уборных, а также в местах осадки сточных вод.

Из всего вышеперечисленного можно сделать вывод о широком применении такого вещества, как зола уноса. Цена на нее варьируется от 500 р. за тонну (при крупном опте) до 850 рублей. Следует отметить, что при использовании самовывоза из дальних регионов стоимость может существенно меняться.

ГОСТы

Разработаны и действуют документы, которые контролируют производство и переработку золы уноса:

  • ГОСТ 25818-91 «Золы уноса для бетонов».
  • ГОСТ 25592-91 «Смеси золошлаковые ТЭС для бетонов».

Для контроля за качеством произведенной золы и смесей с ее применением используют и другие дополнительные стандарты. При этом отбор проб и все виды измерений также проводятся в соответствии с требованиями ГОСТов.

Зола-унос представляет собой тонкодисперсный материал с малым размером частиц, что позволяет использовать ее для ряда производств без дополнительного помола. Характерной особенностью золы является присутствие в ней около 5-6 % несгоревшего топлива, а также железа, в основном в записной форме. Частицы шлака имеют размеры от 0,2 до 20--30 мм. В топках с жидким шлакоудалением шлак получается в гранулированном виде. Для него характерна стекловидная структура.[ ...]

В настоящее время в России ежегодно образуются десятки миллионов тонн золошлаковых отходов. Каждые сутки работы на угле ТЭС накапливается до 1 тыс. т золы и шлака. Подавляющая их часть направляется в отвалы, а в строительной индустрии утилизируется лишь 3-5% ЗШО. Для сравнения: в США и Германии - 40-60%. В США из 20 млн т ежегодно образующихся зол уноса только для изготовления бетона утилизируется 7 млн т.[ ...]

Зола уноса и шлаки образуются при сгорании твердого топлива в присутствии кислорода воздуха при температуре 800°С.[ ...]

Зола-унос может использоваться в производстве строительных материалов без дополнительной обработки (помола, просеивания и т.п.). Нелетучая зола может использоваться в гранулированном виде в дорожном строительстве для изготовления основания участков парковки автомобилей, велосипедных дорожек, дорог, набережных. Ее можно использовать в качестве покрытия на полигонах для размещения твердых бытовых отходов.[ ...]

Зола-унос сухого улавливания может применяться в качестве самостоятельного медленно твердеющего вяжущего, а также в сочетании с портландцементом и известью, в том числе при строительстве автомобильных дорог для укрепления грунтов. Опыт строительства Братской ГЭС на примере утилизации отходов Иркутской ТЭС-1 показал, что эола-унос может быть применена для изготовления бетонных растворов при строительстве плотин, дамб и других гидротехнических сооружений. Ее можно также использовать в качестве покрытия на полигонах для размещения ТБО.[ ...]

Зола-унос добавляется в производстве тяжелых, легких, ячеистых бетонов.[ ...]

Активная зола-уноса сухого отбора может быть использована в качестве минерального порошка в производстве пористого и высокопористого асфальтобетона марок I, II и в горячих и теплых смесях марки III для плотного асфальтобетона, а также в бетонах, применяемых для строительства покрытий и оснований дорог.[ ...]

Использование золы-уноса сухого отбора и ЗШМ отвалов гидроудаления. Очень широк диапазон использования ЗШМ в бетонах: от гидротехнического бетона, в котором сухая зола применяется как заменитель части цемента (до 25 %), до шлакобетона и стеновых блоков из него, в которых в качестве мелкого и крупного заполнителя используются зола и шлак из отвалов и текущего выхода .[ ...]

Характеристики золы (уноса), полученной в топках котлов, несколько отличаются по физико-химическим свойствам и химическому составу от золы, полученной в лабораторных условиях. Такое отличие определяется температурными условиями и временем сжигания частиц топлива в топке, где температура значительно выше 800° С. Основными отличительными факторами является шлакование (расплавление) части минеральной составляющей топлива и наличие в золе частиц недогревшего топлива (механического недожога).[ ...]

Для улавливания золы из потока дымовых газов на современных ТЭС применяют механические и электрические устройства. Значительным недостатком ГЗУ является большой расход вода. Для транспортировки I т золошлаков затрачивается от 10 до 50 м3. В целях сокращения потребления вода на нужды ГЗУ создается оборотная система, когда очистившаяоя от частичек золы и шлака осветленная вода вновь направляется по оборотному трубопроводу на ТЭС в голову системы ГЗУ. В настоящее время в СССГ оборотными системами 1ВУ оборудовано более 57% общего чиола электростанций, сжигающих твердое топливо.[ ...]

Примером использования золы и шлака Иркутской ТЭЦ-1 может служить Ангарский цементно-горный комбинат, забирающий из отвалов ТЭЦ ежегодно около 300 тыс. т отходов. Золошлак там с успехом используется в качестве глинистой составляющей портландце-ментного клинкера, кроме того, комбинат ежегодно перерабатывает до 100 тыс. т сухой золы-уноса. Миллионы рублей «извлек» таким образом Ангарский комбинат, превратив отвалы ТЭЦ-! в своеобразную сырьевую базу. Добавка золы в низкомарочные бетоны и растворы снижает расход цемента на 22-30 % и улучшает качество смесей.[ ...]

Важно отметить, что в ряде случаев зола-унос пригодна для утилизации в промышленности строительных материалов без дополнительной обработки (помола, просеивания и т. п.).[ ...]

При удалении мелкой и легкой фракции золы, которая уносится дымовыми газами из топок и улавливается фильтрами ТЭС в золосборники (такая зола называется золой-уноса), получают золу сухого отбора. Зола сухого отбора поступает с помощью пневмотранспорта либо непосредственно в транспортирующие средства, либо в силосы потребителя. На этих отвалах, имеющихся при каждой ТЭС, хранятся основные массы ЗШМ.[ ...]

Количественное соотношение между шлаками и золой-уносом зависит от конструкции топки и способа сжигания. В агрегатах с твердым шлакоудалением в шлак обычно переходит 10-20% всей золы топлива, с жидким - 20-40, в циклонных топках - до 85-90%.[ ...]

Основными твердыми загрязнителями воздушной среды являются золы уноса, шлаки, сажа.[ ...]

Наиболее качественной для практического применения является зола-уноса сухого отбора, поскольку она всегда отсортирована по фракциям с помощью электрических полей электрофильтров. Такая зола может храниться в силосах в сухом виде и применяться в производстве без дополнительной подготовки. Система подачи золы-уноса в бетоносмесительные узлы аналогична трактам подачи цемента.[ ...]

В процессе сжигания приходится удалять значительные количества золо-шлаковых отходов. С этой целью применяют жидкое или твердое шлакоудаление из нижней части топочных камер и улавливание золы-уноса. При жидком шлакоудалении получают гранулированный материал.[ ...]

Использованию отходов ТЭС должна предшествовать подготовка частиц: у золы-уноса - гомогенизация или фракционирование (сортировка) с целью снизить потери при прокаливании до менее 5%; шлаки, как правило, измельчаются и просеиваются для достижения равномерной зернистости и сохранения постоянного внешнего вида. Поскольку зола-унос ТЭС, сжигающих малореакционные уг и, содержит до 25% горючей массы, разработаны рекомендации по ее обогащению и утилизации с использованием углеродистой фракции в качестве энергетического топлива (Гоголей).[ ...]

Установлено также, что комплексные вяжущие на основе жидкого стекла, гидроксида кальция и золы-уноса обладают повышенными морозостойкостью, водостойкостью и водонепроницаемостью. Высокая прочность выявлена у вяжущих на основе зольной пыли, щелочной или карбонатной добавки натрия или калия в сочетании с лимонной кислотой.[ ...]

А. Т. Логвиненко и М. А. Савинкина проводили опыты с различными образцами полуводного гипса, золой уноса и шлаком. В обрабатываемой воде присутствовало двухвалентное железо (0,3-0,5 мг/л). Их опыты показали, что магнитная обработка воды, как правило, приводит к росту прочности образцов; для гипса наблюдается возрастание прочности во времени. Результаты исследования под электронным микроскопом показали, что в омагниченной воде образуются мелкокристаллические структуры, число мелких кристаллов значительно больше, чем в обычной воде , что обусловливает высокопрочностные характеристики материала .[ ...]

Прекрасно зарекомендовала себя разработанная ВНИИстроем, безотходная технология производства лицевого кирпича на основе зол ТЭС, позволяющая не только сэкономить средства на строительство и эксплуатацию золоотвалов, но и значительно уменьшить загрязнение среды. Поданным Л. С. Бариновойи Ю. С. Волкова (2002), замена в бетоне или растворе 15%-ного цемента на золу уноса или металлургический шлак, что технологически допускается, в перерасчете на мировые объемы их применения, могло бы снизить количество выбросов в атмосферу диоксида углерода (С02) на 300 млн т в год.[ ...]

В ряде случаев в качестве активаторов твердения применены растворы кислот: ортофосфорной (состав вяжущего, %: кислота - 28-40, зола-унос - 30-60, цимот - 12-30); 60%-ной серной в количестве 0,8% от массы золы; 0,4-2,0%-ной концентрированной соляной; 3%-ной соляной с добавлением 0,5-1,0% ССБ. В последнем случае прочность зольных и шлако-зольных бетонов и строительных растворов при нормальном, ускоренном твердении и автоклавной обработке превышает 200 кг/см2.[ ...]

Для тяжелых бетонов она используется взамен части цемента (10-30%) или части песка (150-200 кг/м3), обеспечивая снижение расхода цемента на 30-100 кг/м3. Аналогичны условия утилизации золы-уноса для конструкционных легких бетонов. Для теплоизоляционных легких бетонов зола-унос вводится частично или полностью взамен песка, обеспечивая снижение на 100-150 кг/м3 массы бетона и расхода цемента на 20-40 кг/м3 по сравнению с применением плотного песка. Практически нет экономии цемента и снижения плотности бетона для случаев использования пористого песка.[ ...]

Статистика говорит о том, что 60-90% раковых заболеваний обусловлены экологическими факторами. За 100 лет на Земле в результате разных причин осело более 20 млрд тонн шлаков, 3 млрд тонн зол уноса, миллионы тонн токсичных элементов - кобальта, никеля, мышьяка, цинка и др.[ ...]

В процессе совершенствования производства зольно-щелочных вяжущих предложена технология их получения, не требующая использования дефицитных щелочей (едкий натр, едкое кали) или совместного помола золы-уноса с добавками.[ ...]

Более эффективными аппаратами для улавливания пыли являются различные электрические фильтры, устанавливаемые, например, в котельных тепловых электростанций для очистки дымовых газов от сажи, летучей золы-уноса. К коронирующим и осадительным электродам фильтров (рис. 3.5) подводят постоянный ток высокого напряжения.[ ...]

Оборудование системы "Энвайро - Флок" состоит из высокопроизводительной модернизированной центрифуги фирмы "Alfa-Laval" и оборудования для смешения обезвреженного бурового раствора с обезвреживающим составом на основе цемента с добавками золы уноса ТЭЦ. Сточная вода закачивается в специальную емкость, в которую добавляется регулятор pH, органический или неорганический коагулянт и органический флокулянт (полиакриламид). Обработанная вода из смесительной емкости насосом подается в центрифугу для отделения жидкой фазы. Очищенная вода, т.е. вода, прошедшая центрифугу, пропускается через угольный фильтр и далее сбрасывается на рельеф местности. Система "Энвайро-Флок" смонтирована на специальном трайлере и включает емкость для хранения реагентов, емкости для смешивания и проведения процесса обработки сточной воды коагулянтом и флокулянтом, а также приборы контроля и управления процессом очистки.[ ...]

Температура в топливных камерах современных ТЭЦ достигает 1600 °С, топливо подается в камеру в пылевидном состоянии. Образующиеся из минеральной части топлива частицы пыли имеют различный фракционный состав. При размере до 100 мкм пылевидные частицы уносятся дымовыми газами (зола-унос). Более крупные частицы оседают на пол камеры и оплавляются, образуя стекловидную массу, которую затем подвергают грануляции.[ ...]

Полый центральный вал охлаждается воздухом, нагнетаемым снизу и выходящим из его верхней части. Некоторая часть этого предварительно нагретого воздуха по трубопроводам подается на нижний ярус и подвергается дальнейшему нагреву под воздействием температуры горячей золы и температуры самой печи, по мере того как он перемещается вверх. Затем воздух охлаждается, отдавая свое тепло, которое расходуется на высушивание поступающего на верхний под осадка. Проти-воточное движение воздуха и осадка приводит к оптимальным условиям сгорания. После двукратного прохода через печь воздух отводится в мокрый скруббер для удаления золы-уноса и выбрасывается в атмосферу. При необходимости печь может выполнять функции только сушильного устройства. Горячие газы из выносной топки направляют вместе с осадком сверху вниз; на подах происходит высушивание осадка без его подгорания.[ ...]

Золошлаковые материалы первой группы (активные) способны к самостоятельному твердению, поэтому их можно использовать взамен цемента для устройства оснований из укрепленных грунтов и местных малопрочных каменных материалов. Способностью к самостоятельному твердению обладает только зола-уноса сухого отбора. Ее называют самостоятельным медленно твердеющим вяжущим, от портландцемента она отличается меньшим содержанием клинкерных минералов, отсутствием алита, содержанием минералов низкой активности, извести, ангидрита и полуводного гипса, округлых сплавившихся частиц, оксидов щелочноземельных металлов, наличием стеклообразной фазы и органических веществ, что определяет замедленную гидратацию и замедленное по сравнению с укрепленными портландцементом твердение укрепляемых ею материалов.[ ...]

В настоящее время на большинстве ТЭЦ топливо сжигают в пылевидном состоянии, причем температура в топочной камере достигает 1200-1600°С. При этом конгломераты различных соединений, образующихся из его минеральной части, выделяются в виде пылевидной массы. Мелкие и легкие частицы (размеры от 5 до 100 мкм), содержащиеся в золе в количестве до 80-85 %, уносятся из топок конгломератов дымовыми газами, образуя так называемую золу-унос. Более крупные частицы оседают на под топки, оплавляются в кусковые шлаки или стекловидную массу, которую затем подвергают грануляции. Количественное соотношение между образующимися шлаками и золой-уносом различно, оно зависит от конструкции топки на ТЭЦ и ГРЭС. Так, в топках с твердым шлакоудалением в шлак обычно переходит 10-20 % всей золы топлива. В топках с жидким шлакоудалением в шлак переходит 20-40 %, а в циклонных топках - до 85- 90 % всей золы топлива. Топливные шлаки и зола-унос различаются по составу и свойствам в зависимости от вида топлива и способа его сжигания.[ ...]

В Иркутске по этой технологии освоено производство наружных стеновых панелей из неавтоклавного газоэолобетона для двухэтажных жилых домов и зданий соцкультбыта. Изделия изготовляют на агрегатно-поточной и конвейерной линиях комбината строительных конструкций. С целью снижения их усадки и повышения трещиностойкости используются ячеистые смеси повышенной вязкости следующего состава, на 1 м3: цемент М400 - 330 кг, зола-унос - 450 кг, алюминиевая пудра - 0,9 кг и В/Т=0,4. Необходимая степень поризации смесей обеспечивается за счет применения при формовании специальных прерывистых режимов вибрирования. Бетон стеновых панелей имеет среднюю плотность 800г900 кг/м3 и класс по прочности при сжатии Б2,5-В3,5, морозостойкость его составляет около 50 циклов, коэффициент теплопроводности 0,19-0,21 Вт/м°С. По результатам натурных наблюдений, стеновые панели после 6 лет эксплуатации имели трещины шириной 0,1-0,2 мм.[ ...]

Разработка составов и способов повышения противоэрозионной устойчивости почвенно-грунтовых систем криолитозоны . Физико-химические методы упрочнения грунтов широко применяются в строительстве, особенно в автодорожном, а также для борьбы с эрозией почв и грунтов. В качестве вяжущих используются различные химические вещества минерального и органического происхождения или их смеси. В составе минеральных вяжущих находят применение цементы, известь, гипс, золы уноса, золошлаковые смеси, а также водные растворы хлористых солей кальция, натрия, алюминия и др. К важнейшим компонентам органических структурообразователей грунтов относятся смолы, битумы, сырые нефти. С теоретических и практических позиций авторами данной работы обосновано использование тяжелых нефтяных остатков нефтепереработки в качестве органических структурообразователей грунтов.[ ...]

Расчет степени улавливания обычно ведется для каждой фракции частиц отдельно. Содержание той или иной фракции Ф, можно найти из кривой остатков на сите вычитанием остатков на сите на концах заданного изменения диаметров частиц (рис. 2.1, в). При расчете золоуловителей диаметр принимают постоянным, равным среднеарифметическому диаметру на его концах. Так, в диапазоне изменения диаметров от 10 до 20 мкм в расчетах принимают в качестве среднего значения 15 мкм. В табл. 2.1 приведен фракционный состав золы уноса некоторых топлив СССР.[ ...]

Наряду с перечисленными выше методами уменьшения размеров кусковых материалов и их разделения на классы крупности в практике рекуперадионной технологии твердых отходов большое распространение имеют методы, связанные с решением задач укрупнения мелкодисперсных частиц. ВМР, имеющие как самостоятельное, так и вспомогательное значение и объединяющие различные приемы гранулирования, таблетирования, брикетирования и высокотемпературной агломерации. Их используют при переработке в строительные материалы рада компонентов отвальных пород добычи многих полезных ископаемых, хвостов обогащения углей и золы - уноса ТЭС, в процессах утилизации фосфогипса в сельском хозяйстве и цементной промышленности, при подготовке к переплаву мелкокусковых и дисперсных отходов черных и цветных металлов, в процессах утилизации пластмасс, саж, пылей и древесной мелочи, при обработке шлаковых расплавов в металлургических производствах и электротермофосфорном производстве и во многих других процессах утилизации и переработки ВМР.

МОСКВА СТРОЙИЗДАТ 1977

Печатается по решению секции по технологии бетона научно-технического совета НИИЖБ.

Содержатся основные положения по применению золы, шлака и золошлаковой смеси тепловых электростанций в тяжелых бетонах и растворах. Приведены технические требования к золошлаковым материалам, методы их испытаний, а также правила приемки, транспортирования, хранения и применения. Даны схемы установки для отбора сухой золы из золосборников ТЭС и для приготовления шлама из отвальной золошлаковой смеси, таблицы составов бетонов с добавкой золы, бетонов на золошлаковом заполнителе, а также составов растворов для кирпичной и крупноблочной кладки.

Табл. 11, рис. 3.

ПРЕДИСЛОВИЕ

В 1971 г. в нашей стране были определены задания по применению золошлакового сырья в строительстве и производстве строительных материалов.

Количество золы и шлака, накопленное в отвалах тепловых электростанций, достигает сотни миллионов тонн и с каждым годом увеличивается. Использование же этих отходов развивается очень медленно и не превышает 2 - 3 % общего выхода. Это объясняется следующим:

большим разнообразием физико-механических свойств зол и шлаков, получаемых от различных видов топлива в условиях изменяющихся режимов его сжигания;

отсутствием требуемого количества специальных установок и устройств для организованного отбора, усреднения состава золы и шлака и выдачи их потребителям в виде товарной продукции;

недостаточно широкой постановкой исследований свойств золы и шлака конкретных электростанций, отсутствием четкой классификации зол и шлаков и общесоюзных нормативных документов, регламентирующих их применение;

недостаточным количеством бетоносмесительных установок и заводов, переоборудованных для выпуска бетонов и растворов с золошлаковыми заполнителями.

Однако необходимо отметить, что научно-исследовательскими институтами проведена значительная работа по изучению состава и свойств различных зол и шлаков как добавок и заполнителей бетонов.

Применение золы в бетонах и растворах, а также золошлаковой смеси и шлака в бетонах позволяет частично или полностью заменить цемент, известь, мелкодробленый щебень, доменный гранулированный шлак, природный песок. При этом сокращаются расходы на транспортирование отходов в отвалы, на содержание отвалов и уменьшается потребность в расширении площадей, занимаемых отвалами, а также карьеров для добывания камня и песка.

Экономия от применения золы-уноса как добавки в зависимости от марки бетонов и растворов составляет 0,6 - 1,2 руб. на 1 м 3 . При использовании бетонов на комбинированных заполнителях и на заполнителях из золошлаковой смеси, когда обычные заполнители частично или полностью заменяются золошлаковой смесью или шлаком, экономия составляет 2 - 4 руб. на 1 м 3 бетона.

В Донбассе и Приднепровье, Кузбассе и на Урале применено в строительстве несколько сотен тысяч кубических метров сборных бетонных и железобетонных изделий, изготовленных из бетона на золошлаковых заполнителях. В настоящее время можно считать практически достижимым и экономически выгодным массовое внедрение золошлакового сырья в строительстве. Для этого, прежде всего, необходимо:

снабжать электростанции определенными видами топлива, что улучшит режимы его сжигания и качество зол и шлаков;

на каждой крупной электростанции создать установки и предприятия по отбору, необходимой переработке и поставке зол, шлаков и золошлаковых смесей потребителям в виде товарной продукции установленного качества.

Настоящие рекомендации имеют цель широко информировать строителей о возможности экономии цемента, снижения стоимости и улучшения качества бетона и раствора при использовании золы и шлаков тепловых электростанций.

Рекомендации разработаны НИИ бетона и железобетона Госстроя СССР (канд. техн. наук В .М . Медведев ) и Донецким Промстройниипроектом Госстроя СССР (кандидаты техн. наук И .В . Вольф , Ю .П . Чернышев , инж. В .И . Романов ),

При составлении рекомендаций использованы результаты исследований, выполненных во ВНИИГ Минэнерго СССР, Новокузнецком отделении Уралниистромпроекта, ВНИИЖелезобетона Минпромстройматериалов СССР и в других институтах, а также положительный опыт производственных организаций, внедряющих золу и шлак.

Дирекция НИИЖБ

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Рекомендации распространяются на применение в тяжелых бетонах и строительных растворах зол, шлаков и золошлаковых смесей, образующихся от сжигания каменных и антрацитовых углей тепловых электростанций.

1.2. Бетонные и железобетонные конструкции, изготовленные из бетона с добавкой золы или из бетона на золошлаковом заполнителе, допускается применять в зданиях и сооружениях с нормальной, слабоагрессивной и среднеагрессивной средой при условии соблюдения требований, предусмотренных главой СНиП по защите строительных конструкций от коррозии по отношению к тяжелому бетону. Расход портландцемента в бетонах с добавкой золы и шлака должен быть не менее регламентируемого настоящими рекомендациями.

1.3. До проведения специальных исследований и испытаний не допускается применять бетон на заполнителе из золошлаковой смеси для предварительно-напряженных конструкций и конструкций пролетом более 6 м.

2. ВИДЫ ТОПЛИВНЫХ ОТХОДОВ

2.1. Зола представляет собой тонкодисперсный порошок, образующийся из минеральной части твердого топлива, сжигаемого в топках котлов в пылевидном состоянии, и осаждаемый золоулавливающими устройствами из дымовых газов.

2.2. Шлак представляет собой зернистый материал с крупностью зерен 20 - 0,3 мм, который образуется из расплава минеральной части топлива. После охлаждения расплава в водяной ванне кусковой шлак подвергается дроблению и направляется в систему гидроудаления. Шлак получается при раздельном удалении золы и шлака или при переработке золошлаковой смеси из отвалов.

2.3. Золошлаковая смесь тонкодисперсной золы и зернистого шлака образуется при их совместном гидроудалении или составляется из золы и шлака, получаемых раздельно. Для использования золу и шлак берут из отвалов или непосредственно из трубопроводов гидроудаления.

2.4. Зола является гидравлической добавкой, связывающей свободный гидрат окиси кальция, который выделяется в процессе гидратации цемента, практически не увеличивающей водопотребность смешанного вяжущего, растворов и бетонов.

Зола при нормальной температуре замедляет твердение портландцемента и дает значительно лучшие результаты при пропаривании и обработке изделий в автоклавах.

2.5. Химический состав золы при сжигании углей разных месторождений приведен в табл. .

3. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

Пределы изменения химического состава золы, %, образующейся при сжигании углей

Донбасса

Кузбасса

Караганды

Подмосковья

Таблица 2

Технические требования к золе ТЭС
(по ТУ 34 4014-73 Минэнерго СССР)

Единица измерения

Класс сухой золы

% (по массе)

Не нормируется

Не нормируется

Влажность, не более

Удельная поверхность, не менее

Таблица 3

Технические требования к золе, шлаку и золошлаковой смеси, образующимся от сжигания антрацитовых и каменных углей Донбасса (по данным Донецкого Промстройниипроекта)

Технические требования к видам материалов

золошлаковая смесь

Объемная насыпная масса (в сухом состоянии), кг/м 3 , не менее

Не нормируется

Не более 10

Модуль крупности, не менее

антрацитовых

Не нормируется

каменных

Остаток на сите № 008, %, не более

Удельная поверхность, см 2 /г, не менее

При несоответствии золошлаковых материалов требованиям п. их пригодность рекомендуется определять лабораторными испытаниями бетонов и растворов, изготовленных с добавкой золы и шлака.

4. ПРАВИЛА ПРИЕМКИ

4.1. Поставка и приемка золы ТЭС производятся партиями по 100 т. Поставка золы менее 100 т считается целой партией.

4.2. Определение количества поставляемой золы производится по массе в состоянии естественной влажности.

4.3. Поставщик обязан сопроводить каждую партию поставляемой золы паспортом, удостоверяющим ее качество, в котором указываются: наименование поставщика; номер и дата паспорта; номер партии, количество и класс золы; номера вагонов (при железнодорожной поставке) и номера накладных; соответствие качества поставляемой золы в партии техническим требованиям табл. или настоящих рекомендаций с указанием фактических данных.

4.7. При поставке золы в мешках отбирают пробу не менее 1 кг из одного произвольно выбранного мешка от каждых 100 мешков. Все пробы, отобранные от одной партии, смешивают и отбирают среднюю пробу, как указано в п. .

4.8. При поставке золы водным транспортом потребитель по своему усмотрению отбирает из разных мест судна пробы массой по 2 кг из расчета получения 20 кг от каждых 100 т поставляемой золы. Пробы смешивают и отбирают среднюю пробу, как указано в п. .

4.9 Испытания отобранных средних проб золы производят в соответствии с требованиями раздела настоящих рекомендаций.

4.10. Партия золы или вся поставка может быть забракована потребителем, если ее качество по результатам испытания пробы не отвечает техническим требованиям (см. табл. , ).

4.11. При поставке шлака и золошлаковой смеси по усмотрению потребителя проба отбирается от партии объемом, указанным в п. , в количестве 10 - 20 кг, затем перемешивается, и среднюю пробу отбирают, как указано в .

5. МЕТОДЫ ИСПЫТАНИЯ

5.1. Химический анализ золы, шлака и золошлаковой смеси проводят по ГОСТ 5382-73 или ГОСТ 10538 .1-72, ГОСТ 10538.4-72, ГОСТ 10538.5-72 и ГОСТ 11022 -64.

5.2. Потерю массы при прокаливании (п.п.п.) определяют по ГОСТ 5382-73 , но прокаливание производят при температуре 700 - 800 °С.

5.3. Влажность материалов определяют по ГОСТ 9758 -68 или ГОСТ 11014 -70.

5.4. Величину удельной поверхности золы определяют по ГОСТ 310-60 на приборе ПСХ-2 (или ПСХ-4) по инструкции, прилагаемой к прибору, или определяют ее крупность просеиванием на сите № 008.

5.5. Объемную насыпную массу материалов определяют по ГОСТ 9758 -68.

5.6. Равномерность изменения объема цементно-зольного раствора проверяют по ГОСТ 9758 -68 и ГОСТ 310-60.

5.7. Зерновой состав и модуль крупности шлака и золошлаковой смеси определяют по ГОСТ 8735 -65.

5.8. Дробимость в цилиндре определяют по ГОСТ 9758 -68.

6. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

6.1. Зола может доставляться потребителям в мешках или навалом при условии применения закрытых транспортных средств (железнодорожных вагонов типа «цементовоз», судов, контейнеров, автозоловозов).

6.2. Транспортирование золы производят железнодорожным или автотранспортом поставщика, авто- и водным транспортом потребителя.

6.4. Шлак и золошлаковую смесь из отвалов можно транспортировать навалом в открытых полувагонах, автосамосвалах и прицепах.

6.5. Шлак и золошлаковую смесь рекомендуется хранить под навесом или на открытых площадках. Для устранения загрязнения шлака и золошлаковой смеси грунтом складские площадки должны иметь бетонное покрытие и бортовое ограждение.

7. ГАРАНТИИ ПОСТАВЩИКА

7.1. Зола ТЭС должна быть принята техническим контролем поставщика (ТЭС).

7.2. Поставщик гарантирует соответствие золы, шлака и золошлаковой смеси техническим требованиям (см. табл. , ) при соблюдении потребителем условий транспортирования и хранения.

7.3. Шлак и золошлаковая смесь могут отпускаться поставщиком по техническим условиям, установленным в договорах с потребителем и составленным с учетом требований табл. и настоящих рекомендаций.

8. ОБЛАСТИ ПРИМЕНЕНИЯ ЗОЛЫ, ШЛАКА И ЗОЛОШЛАКОВОЙ СМЕСИ

8.1. Золу I класса (см. табл. ) допускается применять во всех видах тяжелого армированного и неармированного бетона и раствора.

Золу II и III классов допускается применять только в неармированных тяжелых бетонах и во всех видах растворов.

9.3. При раздельном гидрозолоудалении отбор мокрой золы может осуществляться с помощью специальной установки, включающей сгустители Дорра и вакуум-фильтры.

9.4. При необходимости применения золошлаковой смеси из отвалов рекомендуется использовать технический комплекс по приготовлению и применению гидроудаленной золы в виде шлама усредненного состава и определенной влажности производительностью 30 тыс. м 3 готовых изделий в год (см. прил. ).

9.5. Для более эффективного использования золошлаковых смесей в бетонах целесообразно производить их обогащение с целью уменьшения зольной составляющей и достижения оптимального зернового состава.

9.6. Золошлаковую смесь, пригодную по зерновому составу для применения в качестве од нокомпонентного заполнителя бетона, можно отбирать непосредственно из отвала вблизи выпуска золошлаковой пульпы из трубопровода.

9.7. Золошлакову ю смесь, используемую вблизи электростанций, можно транспортировать к месту применения по специальным трубопроводам, соединенным с магистральным трубопроводом гидрозолоудаления.

10. ПРИМЕНЕНИЕ ЗОЛЫ, ШЛАКА И ЗОЛОШЛАКОВОЙ СМЕСИ В ТЯЖЕЛЫХ БЕТОНАХ

10.1. Применение золы, шлака и золошлаковой смеси в качестве активных минеральных добавок, микронаполнителей и заполнителей позволяет получить следующие эффективные виды бетона:

тяжелый бетон, в состав которого вводится зола вместо части цемента и части заполнителя;

мелкозернистый бетон на однокомпонентном заполнителе из золошлаковой смеси;

мелкозернистый бетон на шлакопесчаном заполнителе, включающем шлак раздельного гидроудаления и природный песок;

бетоны на комбинированных заполнителях, в которых золошлаковая смесь или шлак применяются в сочетании с обычными заполнителями.

Тяжелый бетон с добавкой золы

10.2. В состав тяжелого бетона зола вводится в оптимальном количестве, равном 150 кг/м 3 пропариваемого бетона и 100 кг/м 3 бетона, твердеющего без тепловой обработки. При этом достигается экономия цемента, равная 50 - 70 кг/м 3 пропариваемого бетона и 30 - 40 кг/м 3 бетона, твердеющего без тепловой обработки. Зола в бетоне выполняет роль активной минеральной добавки и микронаполнителя, улучшающего структурообразующие свойства смеси. При введении золы в указанном оптимальном количестве водопотребность бетонной смеси практически не изменяется. Поэтому для корректировки состава смеси, подобранного общепринятыми способами, следует сократить расход цемента в рекомендуемом количестве и уменьшить расход песка и щебня (гравия) в принятой пропорции на величину, равную разности между массой введенной золы и сокращаемого цемента.

Примерные составы бетона, установленные в результате исследований, выполненных в Донецком Промстройниипроекте и в Новокузнецком отделении Уралниистромпроекта, приведены в приложении .

10.3. Золу можно вводить в смеситель одним из способов, перечисленных в п. . Бетонная смесь с осадкой конуса более 2 см может приготовляться в смесителях гравитационного действия, менее подвижные и жесткие смеси следует приготовить в смесителях принудительного перемешивания. Продолжительность перемешивания в смесителях гравитационного действия 60 - 120 с, в смесителях принудительного действия 120 - 180 с в зависимости от подвижности или жесткости смеси.

10.4. Пропаривание конструкций и изделий из бетона на портландцементе и шлакопортландцементе с добавкой золы рекомендуется производить при температуре 90 - 95 °С. Продолжительность изотермического прогрева должна быть равна 8 - 10 ч.

10.5. Тяжелый бетон с добавкой золы рекомендуется применять в случаях, когда требования к нему ограничиваются прочностью на сжатие. Добавка золы в бетон при производстве работы в осенне-зимний период методом «термоса» не рекомендуется, так как она замедляет твердение бетона при низких температурах. В случаях, когда к бетону предъявляются особые требования (истираемость, коррозионная стойкость и др.), вопрос о добавке золы должен решаться на основе специальных опытов.

При строительстве в районах с жарким и сухим климатом уход за бетоном, имеющим в своем составе золу (увлажнение и укрытие поверхностей конструкций от высушивания ветром и солнечной радиацией), должен быть более длительным, чем в районах с умеренным климатом.

Мелкозернистый бетон на однокомпонентном заполнителе из золошлаковой смеси

10.6. В мелкозернистом бетоне на однокомпонентном заполнителе из золошлаковой смеси обычные заполнители - щебень и песок - полностью заменяются золошлаковой смесью, содержащей мелкодисперсные золы, мелкие и крупные фракции шлака. При замене песка и щебня низкого качества (загрязненный и запесоченный щебень из песчаника и известняка, мелкозернистый песок) расход цемента в бетоне на однокомпонентном заполнителе из золошлаковой смеси не повышается. При замене в бетоне такой же прочности высококачественного гранитного щебня и песка золошлаковой смесью расход цемента повышается на 10 - 20 %.

10.7. Золошлаковая смесь, применяемая как однокомпонентный заполнитель, может содержать золу (фракции менее 0,315 мм) в пределах от 20 до 50 %. Корректировать состав золошлаковой смеси необходимо, когда содержание золы в ней выходит за указанные пределы.

При получении золошлаковой смеси смешиванием шлака и золы содержание последней в смеси рекомендуется принимать равным 20 % по массе.

10.8. Состав бетона на заполнителе из золошлаковой смеси можно определять по графикам, построенным на основе экспериментальных данных для применяемых видов и марок цемента, требуемой подвижности бетонной смеси и фактических условий твердения бетона (см. прил. ).

10.9. Приготовление бетонной смеси на заполнителе из золошлаковой смеси рекомендуется производить в смесителях принудительного перемешивания типа С-773, С-357 или лопастных растворобетоносмесителях типа СМ-289, С-209 и С-290. Продолжительность перемешивания должна быть в пределах 3 - 5 мин в зависимости от емкости смесителя и жесткости смеси.

При использовании бегунов типа ЗМ-3, Ц-79 и др., применяемых для получения активизированного бетона из доменного гранулированного шлака, обработку золошлаковой смеси следует вести в слабоувлажненном состоянии 8 - 10 мин. В результате прочность бетона повышается на 20 - 30 % по сравнению с прочностью бетона, получаемого из смеси, приготовленной в обычных смесителях.

10.10. Прочность бетона на золошлаковой смеси, твердеющего в нормальных условиях в течение 1 и 2 лет, достигает соответственно 120 - 130 и 140 - 160 % по отношению к месячной прочности. Для ускорения твердения изделий из этого бетона рекомендуется пропаривание при температуре 90 - 95 °С с продолжительностью изотермического прогрева 8 - 10 ч. При этом к месячному сроку нормального твердения бетон достигает проектной прочности. Бетон на заполнителе из золошлаковой смеси можно подвергать автоклавной обработке, которая обеспечивает получение требуемой прочности сразу после термообработки при расходе цемента, меньшем на 20 - 30 %, чем в бетоне на обычных заполнителях.

10.11. Мелкозернистый бетон на заполнителе из золошлаковой смеси получается прочностью от 5 до 50 МПа * и морозостойкостью от 15 до 150 циклов. Коэффициент теплопроводности такого бетона равен 0,87 - 0,93 Вт/(м ∙ К) ** .

* 1 кгс/см 2 = 0,1 МПа.

** 1 ккал/(ч ∙ м ∙ °С) = 1,16 Вт/(м ∙ К).

Переходные коэффициенты при испытании этого бетона в образцах разного размера принимаются как для тяжелого бетона (ГОСТ 10180 -74). Значения нормативных и расчетных сопротивлений бетона можно принимать в зависимости от его марки по главе СНиП по нормам проектирования бетонных и железобетонных конструкций, а начальный модуль упругости - как для тяжелого бетона с коэффициентом 0,85.

Соответствие бетона дополнительным техническим требованиям (тепловыделение, теплопроводность, водопроницаемость, морозостойкость, коррозионная стойкость в агрессивных средах и др.) подтверждается лабораторными испытаниями на конкретных материалах.

10.12. Бетон на заполнителе из золошлаковой смеси рекомендуется применять:

в шахтном строительстве для изготовления сборных бетонных и железобетонных элементов крепи (затяжек, центрифугированных стоек, тумб, бетонитов) и рудничных шпал;

в сельскохозяйственном и малоэтажном строительстве для изготовления мелких и крупных фундаментных и стеновых блоков, плит перекрытий и покрытий, перемычек, колонн и балок длиной до 6 м.

10.13. Для обеспечения сохранности стальной арматуры в железобетонных конструкциях, изготовленных из бетона на золошлаковой заполнителе, необходимо применят в качестве вяжущего портландцемент, отвечающий требованиям ГОСТ 10178-62* . Расход цемента на 1 м 3 бетона принимается не менее минимально допустимой нормы, определяемой по формуле

С = (0,4 + 0,04 А ) Р ,

где С - расход портландцемента, кг/м 3 бетона (минимально допустимая норма);

А - содержание несгоревших частиц угля в зольных фракциях золошлакового заполнителя, %;

Р - количество зольных фракций в составе золошлакового заполнителя, кг/м 3 бетона.

Формула применима при А = 5 - 15 %. Если А < 5 %, минимально допустимая норма расхода цемента определяется по формуле

С = 0,6 Р .

Мелкозернистый бетон на шлакопесчаном заполнителе

10.14. Мелкозернистый бетон на шлакопесчаном заполнителе приготовляется из шлака раздельного гидроудаления и природного кварцевого песка. По предварительным данным, такой бетон более экономичен, чем мелкозернистый бетон на двухфракционном кварцевом песке (на 20 - 25 % по расходу цемента).

При необходимости изготовления густоармированных и тонкостенных конструкций такой бетон будет эффективен.

Бетон на комбинированных заполнителях, включающих золошлаковую смесь или шлак

10.15. При изготовлении тяжелого бетона золошлаковая смесь может заменить песок частично или полностью. Особенно выгодно вводить золошлаковую смесь вместо мелкозернистого песка, требующего повышенного расхода цемента. Бетон, в котором золошлаковая смесь, заменяющая песок, сочетается со щебнем, по прочности не уступает бетону на высококачественных заполнителях.

При применении золошлаковой смеси или шлака в бетонах в сочетании с обычными заполнителями улучшается зерновой состав и удобоукладываемость бетонной смеси, достигается экономия дорогостоящих заполнителей и в отдельных случаях цемента.

10.16. Применение комбинированных заполнителей требует выделения места на складе, наличия бункеров и дозаторов на бетоно-смесительных установках и заводах.

10.17. Составы бетонов на комбинированных заполнителях устанавливают строительные лаборатории с учетом вида и качества местных материалов, условий производства и требований к бетону.

Бетоны на комбинированных заполнителях можно применять в обычных железобетонных конструкциях наравне с тяжелыми бетонами с учетом ранее оговоренных ограничений. В напряженно-армированных, специальных и особо ответственных конструкциях такие бетоны применять нельзя. Возможность применения для этих конструкций бетонов с комбинированными заполнителями необходимо устанавливать на основе специальных исследований в каждом конкретном случае.

11. ПРИМЕНЕНИЕ ЗОЛЫ В СТРОИТЕЛЬНЫХ РАСТВОРАХ

11.1. Золу рекомендуется применять в цементных, цементно-известковых и известковых растворах. Зола применяется в растворах как активная минеральная добавка, пластификатор и микронаполнитель, улучшающий структуру и качество растворов (пластичность, водоудерживающую способность и прочность).

С применением золы могут быть получены растворы следующих марок (по прочности на сжатие): 4, 10, 25, 50, 75, 100 и 150.

11.2. Строительные растворы с добавкой золы рекомендуется применять для каменной кладки и возведения стен из крупноразмерных элементов. Растворы с добавкой золы не рекомендуется применять в зимний период при кладке методом замораживания в связи с замедленным твердением их при пониженной температуре.

Применение растворов с добавкой золы и шлака для армированной кладки возможно после проверки в лаборатории строительной организации сохранности арматуры в таком растворе.

Цементные растворы с добавкой золы

11.3. Оптимальн ое содержание золы в цементных растворах на портландцементе и шлакопортландцементе рекомендуется в пределах 100 - 200 кг/м 3 . В тощих растворах оптимальное содержание золы составляет 80 - 125 % массы цемента. С увеличением расхода цемента содержание золы уменьшается до 40 - 50 % массы цемента. При высоком расходе цемента - более 400 кг/м 3 введение золы в состав раствора малоэффективно.

Применение мелкодисперсной золы улучшает удобоукладываемость растворной смеси и снижает расход цемента на 30 - 50 кг.

Цементно-известковые растворы с добавкой золы

11.4. Оптимальное содержание золы в цементно-известковых растворах составляет 100 - 200 кг/м 3 . Золу рекомендуется вводить взамен части цемента, извести и песка. При этом достигается экономия до 30 - 50 кг цемента и 40 - 70 кг известкового теста на 1 м 3 раствора без ухудшения удобоукладываемости и прочности. Добавка золы практически не изменяет водопотребности цементно-известковых растворных смесей и эффективна при применении портландцемента и шлакопортландцемента.

Крупнодисперсную золу используют как добавку вместо части извести и песка без уменьшения расхода цемента.

Известковые растворы с добавкой золы

11.5. В известковых растворах при замене извести золой расход известкового теста уменьшается на 50 % без снижения прочности и других свойств этих растворов. При замене 50 % извести удвоенным по массе количеством золы вместо извести и части песка достигается экономия извести и повышается марка раствора. Таким путем можно получить известково-зольный раствор марки 25 без применения цемента. Бесцементные известково-зольные растворы марок 10 и 25 экономичны и могут найти применение в массовом малоэтажном и сельском строительстве.

11.6. Подбор составов растворов с добавкой золы производится в следующей последовательности. Вначале определяется состав раствора без добавки золы с расходом составляющих в килограммах на 1 м 3 раствора. Затем уточняется расход составляющих с учетом введения в раствор золы. В результате добавки золы объемная масса раствора увеличивается лишь на 20 - 40 кг, а водопотребность растворных смесей практически не изменяется. Зола вводится в цементные растворы взамен части цемента и части песка; в цементно-известковые - взамен части цемента, извести и песка. После подбора составы строительных растворов уточняются на пробных замесах.

Примерные составы обычных растворов с добавкой золы и без нее приведены в прил. .

11.7. Строительные растворы с добавкой золы приготовляют централизованно на бетонорастворных заводах или растворосмесительных узлах, оснащенных серийными растворосмесителями вместимостью 150, 375, 750 и 1500 л. Составляющие растворных смесей дозируют по массе. Продолжительность перемешивания растворов с добавкой золы устанавливается из условия получения однородной смеси и составляет 3 - 5 мин.

11.8. Контроль качества растворов с добавкой золы должен включать регулярную проверку качества исходных материалов, точности дозирования и времени перемешивания, физико-механических свойств растворной смеси и затвердевшего раствора.

Подвижность, расслаиваемость, водоудерживающую способность и объемную массу растворных смесей, а также прочность при сжатии и изгибе, плотность, водопоглощение и морозостойкость затвердевших растворов определяют по ГОСТ 5802 -66.

Постоянно контролируют подвижность, объемную массу растворных смесей и прочность при сжатии затвердевших растворов. Другие свойства растворных смесей контролируются, когда к растворам предъявляются специальные требования, диктуемые особыми условиями производства работ или эксплуатации конструкции.

ПРИЛОЖЕНИЕ 1

Пропускная способность установки, по расчету, 101 - 500 т золы в год. Вместимость склада, состоящего из шести силосов по 140 т сухой золы, составляет 840 т. Сметная стоимость строительства установки 760 тыс. руб., в том числе строительно-монтажных работ 600 тыс. руб.

Рис. 1. Схема установки сухого отбора золы

1 - вакуум-насос РМК-4, 2 - пневмовинтовой насос НПВ-36-4; 3 - мотор; 4 - бункер-накопитель; 5 - золопровод вакуумный, 6 - осадительная камера с фильтром; 7 - дымовая труба; 8 - дымосос; 9 - электропневматические задвижки; 10 - электрофильтры; 11 - золосборники; 12 - котел ГЭС; 13 - шламопровод на отвал золы и шлака; 14 - склад золы силосный; 15 - отгрузка золы на железнодорожный и автотранспорт; 16 - трубопровод сжатого воздуха; 17 - золопровод напорный; 18 - компрессорная

Схема установки представлена на рис. . От золосборников под электрофильтром, из которых зола выдается в систему гидроудаления, с помощью электропневматических задвижек зола попадает в вакуумный золопровод, осадительную камеру с фильтром и в бункер-накопитель. Вакуум в системе отсоса создается вакуум-насосом, из бункера-накопителя зола захватывается пневмовинтовым насосом, питающимся от компрессорной, и по напорному золопроводу закачивается в силосный склад. С помощью сжатого воздуха, подаваемого по трубопроводу, производится погрузка золы в железнодорожные золовозы или автозоловозы.

По расчетам, окупаемость капитальных затрат на создание установки от прибыли за реализацию сухой золы по 2 - 3 руб. за 1 т произойдет за 6 лет, а от прибыли за счет экономии цемента всего за 1 год.

ПРИЛОЖЕНИЕ 2

Отделение приготовления шлама рассчитано на производство 30 тыс. м 3 железобетонных изделий в год и может быть расширено для обеспечения производства 100 тыс. м 3 изделий в год.

Зола в отвале перемещается с помощью бульдозера в бурты, экскаватором грузится в железнодорожные полувагоны и доставляется на завод. За пять летних месяцев на заводе создается запас золы на всю зиму в открытом складе.

Рис. 2. Схема переработки золошлаковой смеси и использования шлама

1 - железнодорожный полувагон; 2 - открытый склад золошлаковой смеси, доставленной из отвала; 3 - экскаватор на гусеничном ходу; 4 - самосвал для подачи золошлаковой смеси в бассейн; 5 - самоходная шламомешалка; 6 - бассейн для приготовления шлама; 7 - шламонасос; 8 - шламопровод в бункер бетоносмесительного отделения; 9 - бункер для шлама; 10 - дозатор для шлама; 11 - бетоносмесительное отделение

В отделении приготовления шлама (рис. ) имеются два шламбассейна емкостью по 36 м 3 , работающие поочередно на приготовление и расход шлама. Экскаватор грузит золу из открытого склада в автосамосвал, который перемещает ее в шламбассейн. Скоростные самоходные мешалки перемешивают смесь с водой и добавкой СДБ в количестве, обеспечивающем получение шлама постоянного состава и консистенции. Шлам насосом перекачивается в дозировочное отделение бетоносмесительного узла и расходуется через жидкостный автоматический дозатор. Дозируемое количество шлама содержит 90 - 100 % необходимого количества воды для получения бетонной смеси. Получаемая бетонная смесь (см. прил. ) имеет осадку конуса 20 - 24 см.

Капитальные затраты на создание отделения 67,4 тыс. руб. Возможная годовая экономия 118,6 тыс. руб. складывается из уменьшения расхода цемента на 125 кг/м 3 бетона и дефицитного песка до 30 %, а также исключения затрат на работы по отделке поверхностей панелей под окраску.

Снижение стоимости изделия составляет 2 р. 36 к. на 1 м 3 , или 4 %.

Разработанная технология изготовления панелей стен и перекрытий позволила достигнуть высокого качества поверхности изделий, уменьшить время уплотнения смеси (с требуемой осадкой конуса 20 - 24 см) в кассетах конструкции Гипростроммаша до 2 - 3 с и отказаться от шпаклевки поверхности изделий под окраску. Одновременно в результате сокращения длительности вибрирования кассет значительно улучшились условия труда в цехе.

ПРИЛОЖЕНИЕ 3

Таблица 1


Составы тяжелого бетона с добавкой золы на портландцементе или шлакопортландцементе, гранитном щебне крупностью 10 - 20 мм и мелкозернистом кварцевом песке, твердеющего в условиях тепловой обработки

Марка бетона

на шлакопортландцемеите марки 300

на портландцементе марка 400

на портландцементе марки 500

осадка конуса, см

жесткость, с

Таблица 2

Составы тяжелого бетона на портландцементе или шла копортландцементе, гранитном щебне крупностью 10 - 20 мм и мелкозернистом кварцевом песке, твердеющего в условиях тепловой обработки

Марка бетона

Удобоукладываемость бетонной смеси

Расход материалов на 1 м 3 бетона, кг

на портландцементе марки 400

на портландцементе марки 500

осадка конуса, см

жесткость, с

Таблица 3

Составы бетона на заполнителе из золошлаковой смеси, приготовленного в бетоносмесителе принудительного действия и твердеющего в условиях тепловой обработки

Марка бетона

Удобоукладываемость бетонной смеси

Расход материалов на 1 м 3 бетона, кг

на шлакопортландцементе марки 300

на портландцементе марки 400

на портландцементе марки 500

осадка конуса, см

жесткость, с

золошлаковая смесь

золошлаковая смесь

золошлаковая смесь

Электричество - "линия жизни" современной цивилизации. В Индии угольные электростанции - главный источник энергии. В процессе производства электричества на них образуется побочный продукт - зола-унос. Это очень хороший ресурс, который может быть успешно использован в производстве цемента и бетона, так же, как и в других областях.

Цементно-бетонные заводы нуждаются в нем особенно сильно.

Добыча и хранение золы-уноса

В Индии более 70% электричества производится на угольных теплоэлектростанциях. Индийский уголь содержит очень высокий процент золы, варьирующийся от 30% до 45%. Всего в Индии производится около 100 миллионов тонн золы каждый год.

Более тяжелые частицы - примерно 20%, собирающиеся на дне бойлера, называются "донной золой". Остальные 80%, более мелкие, уносятся газами и собираются в электростатических фильтрах (ESP). Это и есть зола-унос.

Зола-унос относится к пуццолановым материалам. Она транспортируется пневматическими механизмами в специальные башни наподобие силосных, где и хранится.

Зола-унос собирается в разных частях ESP. Более крупные и грубые частицы скапливаются в первых нескольких областях, и с каждой последующей областью они становятся все мельче и мельче.

Перед тем, как золу-унос используют в производстве бетона, ее проверяют на отсутствие крупных частиц и недогоревшего угля.

После этого ее загружают в закрытые цистерны и отправляют на RMC-завод.

Также зола-унос продается в пакетах на ТЭС города Бадарпур.

На RMC-заводе зола-унос и цемент хранятся отдельно в "силосных" башнях.

Различные строительные материалы, такие, как крупный наполнитель, песок и т.д., также складируются на заводе, и нет никакой нужды хранить их на месте строительства.

Зола-уноса в производстве бетона

Портланд-цемент, смешанный с водой, дает цементный материал. Еще при этом вырабатывается некоторое количество "свободной" извести. Она делает бетон пористым. Однако, если в смеси есть зола-унос, известь вступает с ней в реакцию, в результате чего получается дополнительный цементный материал. Он делает бетон гуще, прочнее и надежнее. Присутствие золы-уноса также помогает справиться с высокой температурой и повышенной влажностью.

Бюро индийских стандартов IS:456 разрешает использование золы-уноса в качестве частичной замены обычного портланд-цемента до 35%. Это сокращает потребность в обычном портланд-цементе, а значит,помогает сохранять уголь и известняк, что очень экономически важно. Также это сокращает выбросы углекислого газа в атмосферу и поэтому является экологичным.

Цемент, зола-унос, крупный наполнитель, мелкий наполнитель и вода автоматически смешиваются. Управление происходит в контрольной комнате.

Готовую бетонную смесь с RMC-завода собирают в транзитные миксеры и перевозят на место строительства.

Каждую партию бетонной смеси тестируют в лабораториях на заводе перед отправкой на место. Там транзитный миксер выгружает бетон везде, где он требуется.

Мы поговорили с мистером Раджешем Агарвалем, главным инженером Делийской Метростроительной Корпорации, по поводу его взглядов на использование золы-уноса в бетоне:

" Мы, Делийская Метростроительная Корпорация, используем золу-унос, смешанную с бетоном, при строительстве подземных конструкций. И, естественно, считаем ее очень полезной. Зола-унос, будучи пуццолановым материалом, реагирует с известью. Поэтому бетон становится прочнее, чем при обычной реакции. Зола, смешанная с бетоном, заметно улучшает надежность бетона и эффективность низкощелочных реакций с наполнителем, снижает воздействие сульфатов, делает бетон прочнее, предотвращает коррозию арматуры и удлиняет срок действия строений. Поэтому мы не ограничиваемся только песком, традиционными мелкими и крупными наполнителями, цементом и другими обычными материалами, имеющимися в наличии на RMC-заводах."


Мы спросили мистера Шибана Рейну, генерального директора Национального совета по цементу и строительным материалам, что он думает об использовании золы-уноса:

" Зола-унос, как мы все знаем, больше не побочный продукт, а очень ценный ресурс. Архитекторы и строители могут извлечь из нее большую выгоду. Как крупная, так и мелкая, зола-унос - продукт высочайшего качества. Зола-унос может абсорбировать известь, ведь она содержит активный кремниевый компонент, который и делает это. В результате стопроцентная потенциальная сила обычного портланд-цемента становится реальностью. И на это как раз и стоит обратить внимание. Мы видим, что обычный цемент превращается в нечто лучшее, когда в него добавляют золу-унос. Повышается его текучесть. Сейчас зола-унос широко применяется в строительной индустрии. На месте строительства рабочим нужно думать, где хранить цемент и множество других вещей. Но нет нужды задумываться о хранении наполнителей, в том числе и золы-уноса. Нужно просто позвонить по телефону, внести определенный аванс, и вам доставят их точно в срок."


На сегодняшний день в Индии работает более 60 RMC-заводов. На тепловых электростанциях наладили сбор золы-уноса. Индийские ТЭС должны проделать большой и долгий путь, чтобы справиться с дефицитом электричества в этой развивающейся стране. Зола-унос, один из побочных продуктов их действия, имеет огромный потенциал при ее мудром и рациональном использовании на RMC-заводах.

В заключение стоит напомнить о преимуществах использования золы-уноса в бетоне:

  • Высокая, и долговременная прочность.
  • Высокая надежность.
  • Низкая проницаемость.
  • Низкое нагревание при повышенной влажности.
  • Повышенная сопротивляемость к сульфатам и коррозии.
  • Сниженная реакция между щелочью и наполнителем.

Можно без преувеличения назвать этот полезный и ценный продукт великим детищем нашей эры.



Новое на сайте

>

Самое популярное