Домой Придомовые постройки Как сделать индукционный нагреватель своими руками? Индукционные нагреватели своими руками. Самодельный индукционный нагреватель: схема 12 вольт индукционный нагреватель своими руками

Как сделать индукционный нагреватель своими руками? Индукционные нагреватели своими руками. Самодельный индукционный нагреватель: схема 12 вольт индукционный нагреватель своими руками

Собрать паяльник своими руками домашних (и не только) мастеров побуждают прежде всего экономические соображения. Простой паяльник на 220 В для обычных мелких спаечных работ лучше, конечно, купить. Однако и его возможно доработать, не разбирая, чтобы продлить жизнь жала. Но вот «топор» на 150-200 Вт, которым можно паять металлические водопроводные трубы, стоит уже не 4,25, а вдесятеро больше. И не советских рублей, а вечнозеленых условных единиц. Та же проблема возникает, если паять нужно вне доступности электросети от автомобильных 12 В или карманного литий-ионного аккумулятора. Как самостоятельно сделать паяльник на такие случаи, и не только на такие, рассматривается в сегодняшней публикации.

Что такое smd

Sub Micro Devises, сверхминиатюрные устройства. Наглядно можно увидеть smd, открыв мобильный телефон, смартфон, планшет или компьютер. По технологии smd малюсенькие (возможно, меньше среза спички) компоненты без проволочных выводов монтируются пайкой на контактные площадки, по терминологии smd называемые полигонами. Полигон может быть с тепловым барьером, предотвращающим растекание тепла по дорожкам печатной платы. Тут опасность не только и не столько в возможности отслоения дорожек – от нагрева может порваться пистон, соединяющий слои монтажа, что приведет устройство в полную негодность.

Паяльник для smd должен быть не только микромощным, до 10 Вт. Запас тепла в его жале не должен превышать того, который может выдержать паяемая деталь. Но долгая пайка слишком холодным паяльником еще более опасна: припой все не плавится, но деталюшка-то греется. А на режим пайки существенно влияет наружная температура, и тем больше, чем меньше мощность паяльника. Поэтому паяльники для smd выполняются либо с ограничением времени и/или величины теплоотдачи при пайке, либо в оперативной, на протяжении текущей технологической операции, регулировкой температуры жала. Причем держать ее нужно на 30-40 градусов выше температуры плавления припоя с точностью буквально до 5-10 градусов; это т. наз. допустимый температурный гистерезис жала. Этому очень мешает тепловая инерция самого паяльника, и основная задача при конструировании такового – добиться его возможно меньшей постоянной времени по теплу, см. далее.

Сделать паяльник в домашних условиях возможно для любой из указанных целей. В т.ч. и мощный для пайки стального либо медного водопровода, и достаточно точный мини для smd.

Примечание: вообще-то в паяльнике жало это рабочая (залуживаемая) часть его стержня. Но, поскольку стержни бывают и другие разные, будем для ясности считать весь стержень жалом. Если рабочая часть паяльника насаживается на стержень, она называется наконечником. Примем, что наконечник со стержнем это тоже жало.

Самый простой

Пока не будем вдаваться в сложности. Допустим, нам нужен обычный паяльник на 220В без затей. Идем выбирать и видим, разница в ценах достигает 10 и более раз. Разбираемся – почему. Первое: нагреватель, нихромовый или керамический. Последний (не «альтернативный»!) практически вечен, но, если паяльник уронить на твердый пол, может расколоться. Жало паяльников на керамике обязательно несменное – значит, надо покупать новый. А нихромовый нагреватель, если паяльник не забывать включенным на ночь, служит более 10 лет; при эпизодическом пользовании – свыше 20. И в крайнем случае его можно перемотать.

Разница в цене сократилась теперь до 3-4 раз, в чем еще дело? В жале. Никелированное из меди со специальными присадками мало растворяется припоем и очень медленно пригорает в обойме паяльника, но стоит дорого. Латунное или бронзовое хуже греется, и паять им smd нельзя – температурный гистерезис никак не удается вогнать в норму вследствие много худшей, чем у меди, теплопроводности материала. Красномедное жало и съедается припоем, и довольно быстро распухает от окиси меди, но зато дешевле.

Примечание: жало из электротехнической меди (отрезок обмоточного провода) для обычного паяльника непригодно – быстро растворяется и обгорает. Однако для smd такое жало самое то, его теплопроводность максимально возможная, а тепловая инерция и гистерезис минимальны. Правда, менять его придется часто, но жало-то со спичку или меньше.

С обгоранием и распуханием красномедного жала можно бороться просто аккуратностью: окончив работу и дав паяльнику остыть, жало вынимают, обколачивают от окисла, постукивая о край стола, а канал обоймы паяльника продувают. С растворением припоем хуже: часто подтачивать жало неудобно и оно быстро срабатывается.

Сделать жало для паяльника из обычной красной меди в разы более стойким к действию расплавленного припоя можно, не заточив его рабочий конец, а проковав до нужной формы. Холодная медь отлично куется обычным слесарным молотком на наковальне настольных тисков. У автора этой статьи в древнем советском ЭПЦН-25 кованое жало сидит уже более 20 лет, хотя в работе этот паяльник бывает если не каждый день, то уж точно каждую неделю.

Простой из резистора

Расчет

Самый простой паяльник можно сделать из проволочного резистора, это готовый нихромовый нагреватель. Рассчитать его также несложно: при рассеивании номинальной мощности в свободном пространстве проволочные резисторы греются до 210-250 градусов. С теплоотводом в виде жала «проволочник» держит долговременную перегрузку по мощности в 1,5-2 раза; температура жала при этом будет не ниже 300 градусов. Ее можно повысить до 400, дав перегрузку по мощности в 2,5-3 раза, но тогда после 1-1,5 час работы паяльнику нужно будет давать остыть.

Рассчитывают необходимое сопротивление резистора по формуле: R = (U^2)/(kP), где:

R – искомое сопротивление;

U – рабочее напряжение;

P – требуемая мощность;

k – указанный выше коэффициент перегрузки по мощности.

Напр., нужен паяльник на 220 В 100 Вт для пайки медных труб. Теплоотдача большая, поэтому берем k = 3. 220^2 = 48400. kP = 3*100 = 300. R = 48400/300 = 161,3… Ом. Берем резистор на 100 Вт 150 или 180 Ом, т.к. «проволочников» на 160 Ом не бывает, этот номинал из ряда на 5% допуск, а «проволочники» не точнее 10%.

Обратный случай: есть резистор на мощность p, какой мощности из него можно сделать паяльник? От какого напряжения его запитывать? Вспоминаем: P = U^2/R. Берем P = 2 p. U^2 = PR. Берем из этой величины квадратный корень, получаем рабочее напряжение. Напр., есть резистор 15 Вт 10 Ом. Мощность паяльника выходит до 30 Вт. Берем квадратный корень из 300 (30 Вт*10 Ом), получаем 17 В. От 12 В такой паяльник разовьет 14,4 Вт, можно паять мелочь легкоплавким припоем. От 24 В. От 24 В – 57,6 Вт. Перегрузка по мощности почти в 6 раз, но изредка и недолго спаять этим паяльником что-то большое возможно.

Изготовление

Как сделать паяльник из резистора, показано на рис. выше:

  • Подбираем подходящий резистор (поз. 1, см. также далее).
  • Готовим детали жала и крепеж к нему. Под кольцевую пружину надфилем выбирается канавка на стержне. Под болт (винт) и наконечник делаются резьбовые глухие отверстия, поз. 2.
  • Собираем стержень с наконечником в жало, поз.3.
  • Закрепляем жало в резисторе-нагревателе болтом (винтом) с широкой шайбой, поз. 4.
  • Крепим нагреватель с жалом к подходящей рукоятке любым удобным способом, поз. 5-7. Одно условие: термостойкость рукоятки не ниже 140 градусов, до такой температуры могут нагреваться выводы резистора.

Тонкости и нюансы

Описанный выше паяльник из резисторов на 5-20 Вт делали многие (в т.ч. и автор во дни пионерской молодости) и, попробовав, убеждались – работать им всерьез нельзя. Греется невыносимо долго, и паяет только мелочь тычком – слой керамики мешает теплопередаче от нихромовой спирали в жало. Именно поэтому нагреватели фабричных паяльников мотаются на слюдяные оправки – теплопроводность слюды на порядки выше. К сожалению, свернуть слюду в трубочку дома невозможно, да и мотать нихром 0,02-0,2 мм дело тоже не для каждого.

Но вот с паяльниками от 100 Вт (резисторы от 35-50 Вт) дело другое. Тепловой барьер из керамики в них относительно тоньше, слева на рис., а запас тепла в массивном жале на порядок больше, т.к. его объем растет по кубу размеров. Качественно пропаять стык медных труб 1/2″ 200 Вт паяльником из резистора вполне возможно. Особенно, если жало не сборное, а цельное кованое.

Примечание: проволочные резисторы выпускаются на мощность рассеяния до 160 Вт.

Только для паяльника надо искать резисторы старых типов ПЭ или ПЭВ (в центре на рис., в производстве до сих пор). Их изоляция остеклованная, выдерживает многократный нагрев до светло-красного без потери свойств, только темнеет, остывая. Керамика внутри чистая. А вот резисторы С5-35В (справа на рис.) крашеные, внутри тоже. Снять краску в канале полностью невозможно – керамика пористая. При нагреве краска обугливается и жало прикипает намертво.

Регулятор для паяльника

Пример с низковольтным паяльником из резистора приведен выше не зря. Резистор ПЭ (ПЭВ) из хлама или с железного базара чаще всего оказывается неподходящего номинала под наличное напряжение. В таком случае нужно делать регулятор мощности для паяльника. В наши дни это гораздо проще даже людям, имеющим об электронике самое смутное представление. Идеальный вариант – купить у китайцев (ну, Али Экспресс, а то как же) готовый универсальный регулятор напряжения и тока TC43200, см. рис. справа; стоит он недорого. Допустимое входное напряжение 5-36 В; выходное – 3-27 В при токе до 5 А. Напряжение и ток выставляются отдельно. Поэтому можно не только выставить нужное напряжение, но и регулировать мощность паяльника. Есть, напр., инструмент на 12 В 60 Вт, а сейчас нужно 25 Вт. Выставляем ток в 2,1 А, на паяльник пойдет 25,2 Вт и ни милливаттом больше.

Примечание: для использования с паяльником штатные многооборотные регуляторы TC43200 лучше заменить обычными потенциометрами с градуированными шкалами.

Импульсные

Многие предпочитают импульсные паяльники: они лучше подходят для микросхем и др. мелкой электроники (кроме smd, но см. и далее). В ждущем режиме жало импульсного паяльника или холодное, или немного подогревается. Паяют, нажав на кнопку пуска. Жало при этом быстро, за доли-единицы с, греется до рабочей температуры. Контролировать пайку очень удобно: растекся припой, выдавил из капли флюс – отпустил кнопку, жало так же быстро остыло. Нужно только успеть его убрать, чтобы не припаялось туда же. Опасность сжечь компонент, имея некоторый опыт, минимальна.

Типы и схемы

Импульсный разогрев жала паяльника возможен несколькими способами в зависимости от рода работы и требований к эргономике рабочего места. В любительских условиях, или мелкому ИП-одиночке импульсный паяльник удобнее и доступнее будет сделать по одной из след. схем:

  1. С токоведущим жалом под током промышленной частоты;
  2. С изолированным жалом и форсированным его разогревом;
  3. С токоведущим жалом под током высокой частоты.

Электрические принципиальные схемы импульсных паяльников указанных типов приведены на рис: поз. 1 – с токоведущим жалом промышленной частоты; поз. 2 – с форсированным подогревом изолированного жала; поз. 3 и 4 – с токоведущим жалом высокой частоты. Далее мы разберем их особенности, достоинства, недостатки и способы реализации в домашних условиях.

50/60 Гц

Схема импульсного паяльника с жалом под током промышленной частоты наиболее проста, но это не единственное ее достоинство, и не главное. Потенциал на жале такого паяльника не превышает долей вольта, поэтому он безопасен для самых нежных микросхем. Пока не появились индукционные паяльники системы METCAL (см. далее), именно импульсниками промышленной частоты работала значительная часть монтажников на производстве электроники. Недостатки – громозкость, значительный вес и, как следствие, плохая эргономика: на смене длинее 4 час. работники уставали и начинали ошибаться. Но в любительском обиходе импульсных паяльников промышленной частоты до сих пор много: Зубр, Сигма (Sigma), Светозар и др.

Устройство импульсного паяльника на 50/60 Гц показано на поз. 1 и 2 рис. Видимо, ради экономии на издержках производства изготовители чаще всего применяют в них трансформаторы на сердечниках (магнитопроводах) типа П (поз 2), но это далеко не оптимальный вариант: чтобы паяльник паял как ЭПЦН-25, мощность трансформатора нужна 60-65 Вт. Вследствие большого поля рассеяния трансформатор на П-сердечнике в режиме КЗ сильно греется, а время разогрева жала доходит до 2-4 с.

Если П-сердечник заменить на ШЛ от 40 Вт с вторичной обмоткой из медной шины (поз. 3 и 4), то паяльник выдерживает часовую работу с интенсивностью 7-8 паек в минуту без недопустимого перегрева. Для работы в режиме периодических кратковременных КЗ число витков первичной обмотки увеличивают на 10-15% против расчетного. Данное исполнение выгодно и тем, что жало (медная проволока диаметром 1,2-2 мм) можно крепить непосредственно к выводам вторичной обмотки (поз. 5). Поскольку ее напряжение доли вольта, это еще увеличивает экономичность паяльника и удлиняет время его работы до перегрева.

С форсированным подогревом

Схема паяльника с форсированным подогревом особых пояснений не требует. В дежурном режиме нагреватель работает на четверти номинальной мощности, а при нажатии на пуск в него выбрасывается накопленная в батарее конденсаторов энергия. Отключая/подключая к батарее емкости, можно довольно грубо, но в допустимых пределах дозировать количество выделяемого жалом тепла. Достоинство – полное отсутствие наведенного потенциала на жале, если оно заземлено. Недостаток – на имеющихся в широкой продаже конденсаторах схема реализуема лишь для резисторных мини-паяльников, см. далее. Применяется в основном для эпизодических работ на не насыщенных компонентами платах гибридной сборки, smd + обычный печатный монтаж в сквозные пистоны.

На высокой частоте

Импульсные паяльники на повышенной или высокой частоте (десятки или сотни кГц) весьма экономичны: тепловая мощность на жале почти равна паспортной электрической инвертора (см. ниже). Также они компактны и легки, а их инверторы пригодны для питания резисторных мини-паяльников постоянного нагрева с изолированным жалом, см. далее. Нагрев жала до рабочей температуры – за доли с. В качестве регулятора мощности без доработок применим любой тиристорный регулятор напряжения 220 В. Могут быть запитаны постоянным напряжением 220 В.

Примечание: на мощность свыше ок. 50 Вт ВЧ импульсный паяльник делать не стоит. Хотя, напр. компьютерные ИПБ бывают мощностью до 350 Вт и более, но жало на такую мощность сделать практически невозможно – или не прогреется до рабочей температуры, или само расплавится.

Серьезный недостаток – на рабочих частотах сказывается влияние собственной индуктивности жала и вторичной обмотки. Из-за этого на жале на время более 1 мс может возникать наведенный потенциал свыше 50 В, что опасно для компонент КМОП (КМДП, CMOS). Также существенный недостаток – оператор облучается потоком мощности электромагнитного поля (ЭМП). Работать импульсным ВЧ паяльником мощностью 25-50 Вт можно не более часа в день, а до 25 Вт – не более 4-х час, но не более 1,5 час кряду.

Самый простой способ схемной реализации инвертора импульсного ВЧ паяльника на 25-30 Вт для обычных спаечных работ – на основе сетевого адаптера галогеновой лампы на 12 вольт, см. поз. 3 рис. со схемами. Трансформатор можно намотать на сердечнике из 2-х сложенных вместе колец К24х12х6 из феррита с магнитной проницаемостью μ не ниже 2000, или на Ш-образном магнитопроводе из такого же феррита сечением не менее 0,7 кв. см. Обмотка 1 – 250-260 витков эмалированного провода диаметром 0,35-0,5 мм, обмотки 2 и 3 – по 5-6 витков такого же провода. Обмотка 4 – 2 витка в параллель провода диаметром от 2 мм (на кольце) или оплетки от телевизионного коаксиального кабеля (поз. 3а), также запараллеленных.

Примечание: если паяльник более чем на 15 Вт, то транзисторы MJE13003 лучше заменить на MJE130nn, где nn>03, и поставить из на радиаторы площадью от 20 кв. см.

Вариант инвертора для паяльника до 16 Вт может быть выполнен на базе импульсного пускового устройства (ИПУ) для ЛДС или начинки перегоревшей лампочки-экономки соотв. мощности (не бейте колбу, там пары ртути!) Доработку иллюстрирует поз. 4 на рис. со схемами. То, что выделено зеленым, может быть различно в ИПУ разных моделей, но нам оно все равно. Нам нужно удалить пусковые элементы лампы (выделено красным на поз. 4а) и замкнуть накоротко точки А-А. Получим схему поз. 4б. В ней параллельно фазосдвигающему дросселю L5 подключается трансформатор на одном таком же кольце, как в пред. случае или на Ш-образном феррите от 0,5 кв. см (поз. 4в). Первичная обмотка – 120 витков провода диаметром 0,4-0,7; вторичная – 2 витка провода D>2 мм. Жало (поз. 4г) из такого же провода. Готовое устройство компактно (поз. 4д) и может быть помещено в удобный корпус.

Мини и микро на резисторах

Паяльник с нагревательным элементом на основе металлопленочного резистора МЛТ конструктивно аналогичен паяльнику из проволочного резистора, но выполняется на мощность до 10-12 Вт. Резистор работает с перегрузкой по мощности в 6-12 раз, т.к., во-первых, теплоотвод через относительно толстое (но абсолютно более тонкое) жало больше. Во-вторых, резисторы МЛТ физически в разы меньше ПЭ и ПЭВ. Отношение их поверхности к объему соотв. увеличивается и теплоотдача в окружающую среду относительно растет. Поэтому паяльники на резисторах МЛТ делаются только в вариантах мини и микро: при попытке увеличить мощность маленький резистор сгорает. Хотя МЛТ для спецприменения выпускаются на мощность до 10 Вт, своими силами реально сделать только паяльник на МЛТ-2 для мелких дискретных компонент (россыпи) и небольших микросхем, см. напр. видео ниже:

Видео: микро-паяльник на резисторах

Примечание: цепочка резисторов МЛТ может быть также использована в качестве нагревателя автономного аккумуляторного паяльника для обычных спаечных работ, см. след. ролик:

Видео: аккумуляторный мини-паяльник

Гораздо интереснее сделать мини паяльник из резистора МЛТ-0,5 для smd. Керамическая трубочка – корпус МЛТ-0,5 – очень тонкая и почти не препятствует теплопередаче на жало, но не пропустит тепловой импульс в момент касания полигона, отчего частенько сгорают компоненты smd. Подобрав жало (что требует довольно значительного опыта), smd таким паяльником можно не спеша паять, непрерывно контролируя в микроскоп процесс.

Процесс изготовления такого паяльника показан на рис. Мощность – 6 Вт. Нагрев либо непрерывный от инвертора из описанных выше, либо (лучше) с форсироваанным подогревом постоянным током от ИП на 12 В.

Примечание: как сделать усовершенствованный вариант такого паяльника с более широким диапазоном применения, подробно описано здесь – oldoctober.com/ru/soldering_iron/

Индукционные

Индукционный паяльник на сегодняшний день вершина технических достижений в области пайки металлов эвтектическими припоями. В сущности, паяльник с индукционным нагревом это миниатюрная индукционная печь: ВЧ ЭМП катушки-индуктора поглощается металлом жала, которое при этом греется вихревыми токами Фуко. Изготовить своими руками индукционный паяльник не так уж сложно, если есть в распоряжении источник токов ВЧ, напр. компьютерный импульсный блок питания, см. напр. сюжет

Видео: индукционный паяльник


Однако качественно-экономические показатели индукционных паяльников для обычных спаечных работ невысоки, чего не скажешь об их вредном влиянии на здоровье. Фактически единственное их преимущество – прикипевшее к обойме в корпусе жало можно выдирать, на опасаясь порвать нагреватель.

Гораздо больший интерес представляют индукционные мини-паяльники системы METCAL. Их внедрение на производстве электроники позволило уменьшить процент брака из-за ошибок монтажников в 10000 раз (!) и удлинить рабочую смену до нормальной, причем работники расходились после нее бодрыми и дееспособными во всех прочих отношениях.

Устройство паяльника типа METCAL показано слева вверху на рис. Изюминка – в ферроникелевом покрытии жала. Паяльник питается ВЧ точно выдержанной частоты 470 кГц. Толщина покрытия выбрана такой, что на данной частоте вследствие поверхностного эффекта (скин-эффекта) токи Фуко сосредотачивались только в покрытии, которое сильно греется и передает тепло в жало. Самое жало оказывается заэкранированным от ЭМП и наведенные потенциалы на нем не возникают.

Когда покрытие прогреется до точки Кюри, выше которой по температуре ферромагнитные свойства покрытия исчезают, оно поглощает энергию ЭМП гораздо слабее, но ВЧ в медь все равно не пускает, т.к. электрическую проводимость сохраняет. Остыв ниже точки Кюри само по себе или вследствие оттока тепла на пайку, покрытие вновь начинает интенсивно поглощать ЭМП и подогревает жало. Таким образом, жало держит температуру, равную точке Кюри покрытия с точностью буквально до градуса. Тепловой гистерезис жала при этом ничтожен, т.к. определяется тепловой инерцией тонкого покрытия.

Во избежание вредного влияния на людей паяльники выпускаются с несменными жалами, наглухо закрепленными в картридже коаксиальной конструкции, по которому и подводится к катушке ВЧ. Картридж вставляется в ручку паяльника – держатель с коаксиальным разъемом. Картриджи выпускаются типов 500, 600 и 700, что соответствует точке Кюри покрытия в градусах Фаренгейта (260, 315 и 370 градусов Цельсия). Основной рабочий картридж – 600; 500-м паяют особо мелкие smd, а 700-м крупные smd и россыпь.

Примечание: чтобы перевести градусы Фаренгейта в Цельсия, нужно от фаренгейтов отнять 32, умножить остаток на 5 и поделить на 9. Если надо наоборот, к цельсиям добавляем 32, результат множим на 9 и делим на 5.

Все замечательно в паяльниках METCAL, кроме цены картриджа: за «(название фирмы) новый, хороший» – от $40. «Альтернативные» в полтора раза дешевле, но вырабатываются вдвое быстрее. Сделать самому жало METCAL нереально: покрытие наносится напылением в вакууме; гальваническое при температуре Кюри мгновенно отслаивается. Посаженная на медь тонкостенная трубка не обеспечит абсолютного теплового контакта, без чего METCAL превращается просто в плохой паяльник. Тем не менее, сделать самому почти полный аналог паяльника METCAL, причем со сменным жалом, хоть и трудно, но возможно.

Индукционный для smd

Устройство самодельного индукционного паяльника для микросхем и smd, по рабочим качествам аналогичного METCAL, показано справа на рис. Когда-то похожие паяльники применялись на спецпроизводстве, но METCAL их полностью вытеснили благодаря лучшей технологичности и большей рентабельности. Однако для себя такой паяльник сделать можно.

Его секрет – в соотношении плеч наружной части жала и выступающего из катушки внутрь хвостовика. Если оно такое, как показано на рис. (приблизительно), а хвостовик покрыт теплоизоляцией, то тепловой фокус жала не выйдет за пределы обмотки. Хвостовик будет, конечно, горячее кончика жала, но их температуры будут меняться синхронно (теоретически термогистерезис нулевой). Раз настроив автоматику с помощью дополнительной термопары, измеряющей температуру кончика жала, дальше можно паять спокойно.

Роль точки Кюри играет таймер. Сигналом от терморегулятора на подогрев он обнуляется, напр., открыванием ключа, шунтирующего накопительную емкость. Запускается таймер сигналом, свидетельствующим о фактическом начале работы инвертора: напряжение с дополнительной обмотки трансформатора из 1-2 витков выпрямляется и разблокирует таймер. Если паяльником долго не паяют, таймер спустя 7 с выключит инвертор, пока жало не остынет и терморегулятор не выдаст новый сигнал на подогрев. Суть здесь в том, что термогистерезис жала пропорционален отношению времен выключенного и включенного нагрева жала O/I, а средняя мощность на жале обратному I/O. До градуса такая система температуру жала не держит, но +/–25 Цельсия при рабочей жала 330 обеспечивает.

В заключение

Так какой же паяльник делать? Мощный из проволочного резистора однозначно стоит: расходов на него всего ничего, есть не просит, а выручить может основательно.

Стоит также сделать, чтобы был на хозяйстве, простой паяльник для smd из резистора МЛТ. Кремниевая электроника выдохлась, она в тупике. Квантовая уже на подходе, и вдали явственно замаячила графеновая. Напрямую с нами та и другая не сопрягаются, как компьютер через экран, мышку и клавиатуру или смартик/планшетка через экран и сенсоры. Поэтому кремниевое обрамление в устройствах будущего останется, но исключительно smd, а теперешняя россыпь покажется чем-то вроде радиоламп. И не думайте, что это фантастика: всего 30-40 лет тому назад ни один фантаст до смартфона не додумался. Хотя первые образцы мобильников тогда уже были. А утюг или пылесос «с мозгами» тогдашним мечтателям и в дурном сне в голову не пришли бы.

(1 оценок, среднее: 5,00 из 5)

Индукционные отопительные котлы – это приборы, которые отличаются очень высоким КПД. Они позволяют заметно снизить затраты на электроэнергию по сравнению с традиционными приборами, оборудованными ТЭНами.

Модели промышленного производства недешевы. Однако сделать индукционный нагреватель своими руками сможет любой домашний мастер, владеющий нехитрым набором инструментов. Ему в помощь мы предлагаем подробное описание принципа действия и сборки эффективного обогревателя.

Индукционный нагрев невозможен без использования трех основных элементов:

  • индуктора;
  • генератора;
  • нагревательного элемента.

Индуктор представляет собой катушку, обычно выполненную из медной проволоки, с ее помощью генерируют магнитное поле. Генератор переменного тока используют для получения высокочастотного потока из стандартного потока домашней электросети с частотой 50 Гц.

В качестве нагревательного элемента применяется металлический предмет, способный поглощать тепловую энергию под воздействием магнитного поля. Если правильно соединить эти элементы, можно получить высокопроизводительный прибор, который прекрасно подходит для подогрева жидкого теплоносителя и .

С помощью генератора электрический ток с необходимыми характеристиками подается на индуктор, т.е. на медную катушку. При прохождении через нее поток заряженных частиц формирует магнитное поле.

Принцип действия индукционных нагревателей основан на возникновении электротоков внутри проводников, появляющихся под воздействием магнитных полей

Особенность поля состоит в том, что оно обладает способностью на высоких частотах изменять направление электромагнитных волн. Если в это поле поместить какой-нибудь металлический предмет, он начнет нагреваться без непосредственного контакта с индуктором под воздействием созданных вихревых токов.

Высокочастотный электрический ток, поступающий от инвертора к индукционной катушке, создает магнитное поле с постоянно изменяющимся вектором магнитных волн. Помещенный в это поле металл быстро разогревается

Отсутствие контакта позволяет сделать потери энергии при переходе из одного вида в другой ничтожными, чем и объясняется повышенный КПД индукционных котлов.

Чтобы подогреть воду для отопительного контура, достаточно обеспечить ее контакт с металлическим нагревателем. Часто в качестве нагревательного элемента используют металлическую трубу, через которую просто пропускают поток воды. Вода попутно охлаждает нагреватель, что значительно увеличивает срок его службы.

Электромагнит индукционного прибора получают путем намотки проволоки вокруг сердечника из ферромагнита. Полученная в результате катушка индукции разогревается и передает тепло нагреваемому телу или протекающему рядом теплоносителю через теплообменник

Преимущества и недостатки прибора

“Плюсов” у вихревого индукционного нагревателя великое множество. Это простая для самостоятельного изготовления схема, повышенная надежность, высокий КПД, относительно низкие затраты на электроэнергию, длительный срок эксплуатации, малая вероятность возникновения поломок и т.п.

Производительность прибора может быть значительной, агрегаты этого типа успешно используются в металлургической промышленности. По скорости нагрева теплоносителя устройства этого типа уверенно соперничают с традиционными электрическими котлами, температура воды в системе быстро достигает необходимого уровня.

Во время функционирования индукционного котла нагреватель слегка вибрирует. Эта вибрация стряхивает со стенок металлической трубы известковый осадок и другие возможные загрязнения, поэтому в очистке такой прибор нуждается крайне редко. Конечно, отопительную систему следует защитить от этих загрязнений с помощью механического фильтра.

Индукционная катушка нагревает металл (трубу или куски проволоки), помещенные внутри нее, с помощью высокочастотных вихревых токов, контакт не обязателен

Постоянный контакт с водой сводит к минимуму и вероятность перегорания нагревателя, что является довольно частой проблемой для традиционных котлов с ТЭНами. Несмотря на вибрацию, котел работает исключительно тихо, дополнительная шумоизоляция в месте установки прибора не понадобится.

Еще индукционные котлы хороши тем, что они практически никогда не протекают, если только монтаж системы выполнен правильно. Это очень ценное качество для , так как исключает или значительно сокращает вероятность возникновения опасных ситуаций.

Отсутствие протечек обусловлено бесконтактным способом передачи тепловой энергии нагревателю. Теплоноситель с помощью описанной выше технологии можно разогреть чуть ли не до парообразного состояния.

Это обеспечивает достаточную тепловую конвекцию, чтобы стимулировать эффективное перемещение теплоносителя по трубам. В большинстве случаев отопительную систему не придется оборудовать циркуляционным насосом, хотя все зависит от особенностей и схемы конкретной системы отопления.

Выводы и полезное видео по теме

Ролик #1. Обзор принципов индукционного нагрева:

Ролик #2. Интересный вариант изготовления индукционного нагревателя:

Для установки индукционного нагревателя не нужно получать разрешение контролирующих органов, промышленные модели таких устройств вполне безопасны, они подходят и для частного дома, и для обычной квартиры. Но владельцам самодельных агрегатов не следует забывать о технике безопасности.

Простой индукционный нагреватель состоит мощного генератора высокой частоты и низкоомной катушки-контура, которая является нагрузкой генератора.

Генератор с самовозбуждением генерирует импульсы на основании резонансной частоты контура. В результате в катушке возникает мощное переменное электромагнитное поле частотой порядка 35 кГц.
Если в центр этой катушки поместить сердечник из токопроводящего материала, то внутри него возникнет электромагнитная индукция. В результате частой смены эта индукция вызовет в сердечнике вихревые токи, которые в свою очередь повлекут за собой выделение тепла. Это классический принцип преобразования электромагнитной энергии в тепловую.
Индукционные нагреватели очень давно используются во многих областях производства. С их помощью можно делать закалку, бесконтактную сварку, и самое главное - точечный прогрев, а также плавление материалов.
Я покажу вам схему простого низковольтного индукционного нагревателя, которая уже стала классической.


Мы её ещё больше упростим эту схему и стабилитроны «D1, D2» не будем устанавливать.
Элементы, которые понадобятся:
1. Резисторы на 10 кОм – 2 шт.
2. Резисторы на 470 Ом – 2 шт.
3. Диоды Шоттки на 1 А – 2 шт. (Можно другие, главное на ток от 1 А и быстродейственные)
4. Полевые транзисторы IRF3205 – 2 шт. (можно взять любые другие мощные)
5. Индуктор «5+5» - 10 витком с отводом от середины. Чем толще провод, тем лучше. Мотал на деревянной круглой палке, сантиметра 3-4 в диаметре.
6. Дроссель – 25 витков на кольце из блока старого компьютера.
7. Конденсатор 0,47 мкФ. Лучше набирать емкость несколькими конденсаторами и на напряжение не ниже 600 Вольт. Я по началу взял на 400, в результате чего он начал греться, далее заменил его на составной из двух последовательно, но так не делают, просто под рукой больше не было.

Изготовление простой индукционный нагреватель 12 В




Собрал всю схему навесным монтажом, отделив колодкой индуктор от всей схемы. Конденсатор желательно располагать в непосредственной близости от выводов катушки. Не как у меня в этом примере в общем. Транзисторы установил на радиаторы. Запитал всю установку от аккумулятора 12 Вольт.



Работает отлично. Лезвие канцелярского ножа нагревает до красноты очень быстро. Рекомендую всем к повторению.
После замены конденсатора они больше не грелись. Транзисторы и сам индуктор греются, если работает постоянно. На небольшое время – не критично почти.

Приборы, осуществляющие нагрев за счет электричества, а не газа, безопасны и удобны. Такие нагреватели не производят копоти и неприятного запаха, но потребляют большое количество электроэнергии. Отличный выход - собрать индукционный нагреватель своими руками. Это и экономия средств, и вклад в бюджет семьи. Существует много простых схем, по которым индуктор можно собрать самостоятельно.

Для того чтобы было легче разобраться в схемах и правильно собрать конструкцию, нелишним будет заглянуть в историю электричества. Способы нагрева металлических конструкций электромагнитным током катушки широко используются в промышленном изготовлении бытовых приборов - котлов, нагревателей и плит. Оказывается, можно сделать рабочий и долговечный индукционный нагреватель своими руками.

Принцип работы устройств

Принцип работы устройств

Знаменитый британский ученый XIX века Фарадей в течение 9 лет проводил исследования, чтобы преобразовать магнитные волны в электричество. В 1931 году наконец было совершено открытие, получившее название электромагнитная индукция. Проволочная обмотка катушки, в центре которой находится сердечник из магнитящегося металла, создает магнитное поле под силой переменного тока. Под действием вихревых потоков сердечник нагревается.

Важный нюанс - нагревание произойдет, если переменный ток, питающий катушку, будет менять вектор и знак поля на высоких частотах.

Открытие Фарадея стали применять как в промышленности, так и при изготовлении самодельных моторов и электронагревателей. Первую плавильню на основе вихревого индуктора открыли в 1928 году в Шеффилде. Позже по тому же принципу обогревали цеха заводов, а для нагрева воды, металлических поверхностей знатоки собирали индуктор своими руками.

Схема устройства того времени действительна и сегодня. Классический пример - индукционный котел, в составе которого имеются:

  • металлический сердечник;
  • корпус;
  • тепловая изоляция.

Меньший вес, размер и более высокий КПД осуществляются за счет тонких стальных труб, служащих основой сердечника. В кухонных плитках индуктором выступает сплющенная катушка, расположенная вблизи варочной панели.

Особенности схемы для ускорения частоты тока следующие:

  • промышленная частота в 50 Гц не подходит для самодельных приборов;
  • прямое подключение индуктора к сети приведет к гулу и слабому нагреву;
  • эффективное нагревание осуществляется при частоте 10 кГц.

Сборка по схемам

Собрать индуктивный нагреватель своими руками может любой человек, знакомый с законами физики. Сложность устройства будет варьироваться от степени подготовленности и опытности мастера.

Существует множество видеоуроков, следуя которым можно создать эффективное устройство. Практически всегда необходимо использовать такие основные составляющие:

  • стальная проволока диаметром 6−7 мм;
  • медная проволока для катушки индуктивности;
  • сетка из металла (для удержания проволоки внутри корпуса);
  • переходники;
  • трубы для корпуса (из пластика или стали);
  • высокочастотный инвертор.

Этого будет достаточно для сборки индукционной катушки своими руками, а ведь именно она находится в основе проточного водонагревателя. После подготовки необходимых элементов можно подходить непосредственно к процессу изготовления аппарата:

  • нарезать проволоку на отрезки в 6−7 см;
  • металлической сеткой покрыть внутреннюю часть трубы и засыпать проволоку доверху;
  • аналогично закрыть отверстие трубы снаружи;
  • намотать на пластиковый корпус медную проволоку не менее 90 раз для катушки;
  • вставить конструкцию в систему отопления;
  • с помощью инвертора подключить катушку к электричеству.

Желательно предварительно заземлить инвертор и приготовить антифриз или воду.

По похожему алгоритму можно легко собрать индукционный котел, для чего следует:

  • нарезать заготовки из стальной трубы 25 на 45 мм со стенкой не толще 2 мм;
  • сварить их друг с другом, соединяя меньшими диаметрами между собой;
  • приварить железные крышки к торцам и просверлить отверстия для патрубков с резьбой;
  • сделать крепление для индукционной печки, приварив с одной стороны два уголка;
  • вставить варочную панель в крепление из уголков и подключить к электросети;
  • внести в систему теплоноситель и включить нагрев.

Многие индукторы работают на мощности не выше 2 - 2,5 кВт. Такие обогреватели рассчитаны на помещение 20 - 25 м². Если генератор используют в автосервисе, можно подключить его к сварочному аппарату, но важно учитывать определенные нюансы:

  • Необходим переменный ток, а не постоянный как у инвертора. Сварочный аппарат придется исследовать на наличие точек, где напряжение не имеет прямой направленности.
  • Количество витков к проводу большего сечения подбирается математическим вычислением.
  • Потребуется охлаждение работающих элементов.

Создание усложненных приборов

Сделать нагревательную установку ТВЧ своими руками сложнее, но это подвластно радиолюбителям, ведь для ее сбора потребуется схема мультивибратора. Принцип работы аналогичен - вихревые токи, возникающие из взаимодействия металлического наполнителя в центре катушки и ее собственного высокомагнитного поля, нагревают поверхность.

Конструирование ТВЧ-установок

Поскольку даже небольшого размера катушки вырабатывают ток около 100 А, вместе с ними потребуется подключить резонирующую емкость для уравновешивания индукционной тяги. Существует 2 вида рабочих схем для нагревательной ТВЧ в 12 В:

  • подключенная к питанию сети.

  • целенаправленная электрическая;
  • подключенная к питанию сети.

В первом случае мини ТВЧ-установку можно собрать за час. Даже при отсутствии сети в 220 В можно использовать такой генератор где угодно, но при наличии автомобильных аккумуляторов как источников питания. Конечно, она недостаточно мощная, чтобы плавить металл, но способна нагреться до высоких температур, необходимых для мелкой работы, например, нагрев ножей и отверток до синего цвета. Для ее создания необходимо приобрести:

  • полевые транзисторы BUZ11, IRFP460, IRFP240;
  • автомобильный аккумулятор от 70 А/ч;
  • высоковольтные конденсаторы.

Ток источника питания 11 А в процессе нагревания снижается до 6 А из-за сопротивления металла, но необходимость в толстых проводах, выдерживающих ток 11−12 А, сохраняется, чтобы избежать их перегрева.

Вторая схема для индукционной установки нагрева в пластиковом корпусе более сложная, на основе драйвера IR2153, но по ней удобнее выстроить резонанс по регулятору в 100к. Управлять схемой необходимо через адаптер сети с напряжением от 12 В. Силовую часть можно подвести напрямую к основной сети в 220 В, используя диодный мост. Частота резонанса получается 30 кГц. Потребуются следующие элементы:

  • ферритовый сердечник 10 мм и дроссель 20 витков;
  • медная трубка в качестве катушки ТВЧ в 25 витков на оправку 5−8 см;
  • конденсаторы 250 V.

Вихревые нагреватели

Более мощную установку, способную греть болты до желтого цвета, можно собрать по простой схеме. Но при работе выделение тепла будет довольно большим, поэтому рекомендуется устанавливать радиаторы на транзисторы. Также потребуется дроссель, позаимствовать который можно из блока питания любого компьютера, и следующие вспомогательные материалы:

  • стальной ферромагнитный провод;
  • медная проволока в 1,5 мм;
  • полевые транзисторы и диоды под обратное напряжение от 500 В;
  • стабилитроны мощностью 2−3 Вт с расчетом на 15 В;
  • простые резисторы.

В зависимости от желаемого результата, намотка провода на медную основу составляет от 10 до 30 витков. Далее идет сборка схемы и подготовка катушки-основы нагревателя примерно из 7 витков медной проволоки в 1,5 мм. Она подключается к схеме, а затем к электричеству.

Умельцы, знакомые со сваркой и управлением трехфазным трансформатором, способны еще больше повысить КПД устройства при одновременном снижении веса и размера. Для этого нужно сварить основания двух труб, которые послужат как сердечником, так и нагревателем, а в корпус после обмотки вварить два патрубка для осуществления подвода и отвода теплоносителя.

Ориентируясь на схемы, можно достаточно быстро собрать индукторы различной мощности для нагрева воды, металлов, обогрева дома, гаража и автосервиса. Необходимо помнить и о правилах безопасности для эффективной службы нагревателей такого типа, ведь утечка теплоносителя из самодельного устройства может закончиться пожаром.

Есть определенные условия организации работы:

  • расстояние между индукционным котлом, стенами, электроприборами должно быть не меньше 40 см, а от пола и потолка лучше отступить 1 м;
  • с помощью манометра и устройства по сбросу воздуха обеспечивается система безопасности за выходным патрубком;
  • пользоваться устройствами желательно в закрытых контурах с принудительной циркуляцией теплоносителя;
  • возможно применение в пластиковых трубопроводах.

Самостоятельная сборка индукционных генераторов обойдется недорого, но и не бесплатно, ведь нужны комплектующие достаточно хорошего качества. Если у человека нет специальных знаний и опыта в радиотехнике и сварке, то не стоит самостоятельно собирать обогреватель для большой площади, ведь мощность нагрева не превысит 2,5 кВт.

Однако самостоятельная сборка индуктора может рассматриваться как самообразование и повышение квалификации хозяина дома на практике. Можно начать с небольших приборов по простым схемам, а поскольку принцип действия в более сложных устройствах тот же, только добавляются дополнительные элементы и преобразователи частоты, то и освоить его поэтапно будет легко и вполне бюджетно.

Вконтакте

Принцип работы индукционного нагревателя основан на двух физических эффектах: первый заключается в том, что при движении проводящего контура в магнитном поле в проводнике возникает индуцированный ток, а второй основан на выделении тепла металлами, через которые пропускают ток. Первый индукционный нагреватель был реализован в 1900 году, когда был найден способ бесконтактного нагрева проводника – для этого использовали токи высокой частоты, которые индуцировались с помощью переменного магнитного поля.

Индукционный нагрев нашёл применение в различных сферах деятельности человека благодаря:

  • быстрому разогреву;
  • возможности работы в различных по физическим свойствам средах (газ, жидкость, вакуум);
  • отсутствию загрязнений продуктами горения;
  • возможности избирательного нагрева;
  • формам и размерам индуктора – они могут быть любыми;
  • возможности автоматизации процесса;
  • высокому проценту КПД – до 99%;
  • экологичности – нет вредных выбросов в атмосферу;
  • длительному сроку службы.

Сфера применения: отопление помещений

В быту схема индукционного нагревателя была реализована для и плит. Первые получили особенно большую популярность и признание у пользователей за счёт отсутствия нагревательных элементов, которые снижают работоспособность в котлах с другим принципом действия, и разъёмных соединений, что даёт экономию на обслуживании систем индукционного отопления.

Примечание: Схема устройства настолько проста, что может быть создана в домашних условиях, и своими руками можно создать самодельный нагреватель.

На практике используются несколько вариантов, где используется разного типа индукторы:

Принцип действия

Последний вариант, наиболее часто используемый в котлах отопления, стал востребован за счёт простоты его реализации. Принцип работы установки индукционного нагрева основан на передаче энергии магнитного поля теплоносителю (воде). Магнитное поле формируется в индукторе. Переменный ток, проходя через катушку, создаёт вихревые потоки, которые трансформируют энергию в тепло.


Вода, подаваемая через нижний патрубок в котёл, прогревается за счёт передачи энергии, и выходит через верхний патрубок, попадая дальше в систему отопления. Для создания давления используют встроенный насос. Постоянно циркулирующая в котле вода не позволяет элементам перегреваться. Кроме того, во время работы происходит вибрация теплоносителя (при низком уровне шума) за счёт чего невозможно отложение накипи на внутренних стенках котла.

Индукционные нагреватели могут быть реализованы различными способами.

Реализация в бытовых условиях

Индукционное отопление ещё не завоевало в достаточной степени рынок из-за высокой стоимости самой системы обогрева. Так, например, для промышленных предприятий подобная система обойдётся в 100 000 рублей, для бытового использования – от 25 000 руб. и выше. Поэтому вполне понятен интерес к схемам, которые позволяют создать самодельный индукционный нагреватель своими руками


На базе трансформатора

Основным элементом системы индукционного отопления с трансформатором станет само устройство, у которого есть первичная и вторичная обмотки. Вихревые потоки будут формироваться в первичной обмотке и создадут электромагнитное индукционное поле. Это поле будет воздействовать на вторичную, которая и есть, по сути, индукционный нагреватель, реализованный физически в виде корпуса котла отопления. Именно вторичная короткозамкнутая обмотка передает энергию теплоносителю.


Главными элементами установки индукционного нагрева являются:

  • сердечник;
  • обмотка;
  • два вида изоляции – тепло- и электроизоляция.

Сердечник – это две ферримагнитные трубки разного диаметра с толщиной стенок не менее 10 мм, вваренные друг в друга. Тороидальная обмотка из медного провода производится по внешней трубке. Необходимо наложить от 85 до 100 витков с равным расстоянием между витками. Переменный ток, изменяясь во времени, создаёт вихревые потоки в замкнутом контуре, которые и нагревают сердечник, следовательно, и теплоноситель, осуществляя индукционный нагрев.

С использованием высокочастотного сварочного инвертора

Индукционный нагреватель может быть создан с использованием сварочного инвертора, где главными компонентами схемы служат генератор переменного тока, индуктор и нагревательный элемент.

Генератор используется для преобразования стандартной частоты в сети электропитания 50 Гц в в ток с более высокой частотой. Этот модулированный ток подаётся на цилиндрическую катушку-индуктор, где в качестве обмотки используется медная проволока.


Катушка создаёт переменное магнитное поле, вектор которого меняется с заданной генератором частотой. Созданные вихревые токи, индуцированные магнитным полем, производят нагрев металлического элемента, который передаёт энергию теплоносителю. Таким образом реализуется ещё одна схема индукционного отопления, выполненная своими руками.

Нагревательный элемент тоже может быть создан своими руками из нарезанной металлической проволоки длиной около 5 мм и отрезка полимерной трубы, в которую помещается металл. При установке вентилей сверху и снизу трубы следует проверить плотность наполнения – не должно оставаться свободного пространства. Согласно схеме поверх трубы накладывается около 100 витков медной проводки, которая и является индуктором, подключаемым к клеммам генератора. Индукционный нагрев медной проволоки происходит за счёт вихревых токов, формируемых переменным магнитным полем.

Примечание: Индукционные нагреватели своими руками могут выполнены по любой схеме, главное помнить о том, что важно осуществить надёжную теплоизоляцию, в противном случае КПД системы отопления значительно упадёт.

Правила безопасности

Для систем отопления, где используется индукционный нагрев, важно соблюдать несколько правил во избежание утечек, потерь КПД, расходования электроэнергии, несчастных случаев.

  1. В системах индукционного отопления необходимо наличие предохранительного клапана для сброса воды и пара на случай выхода из строя насоса.
  2. Манометр и УЗО обязательны для безопасной работы отопительной системы, собранной своими руками.
  3. Наличие заземления и электроизоляции всей системы индукционного отопления предупредит поражение электрическим током.
  4. Во избежание пагубного воздействия электромагнитного поля на организм человека подобные системы лучше выносить за пределы жилой зоны, где следует соблюдать правила монтажа, согласно которым устройство индукционного нагрева должно размещаться на расстоянии 80 см от горизонтальных (пола и потолка) и 30 см от вертикальных поверхностей.
  5. Перед включением системы следует обязательно проверять наличие теплоносителя.
  6. Для предотвращения сбоев в работе электросети рекомендуется подключение котла с индукционным нагревом, выполненного своими руками по предложенным схемам, к отдельной питающей линии, сечение кабеля которой будет составлять не менее 5 мм2. Обычная проводка может не выдержать требуемое энергопотребление.


Новое на сайте

>

Самое популярное