Домой Отделочные материалы Какое основное свойство дроби. Обыкновенные дроби

Какое основное свойство дроби. Обыкновенные дроби

Дроби

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Дроби в старших классах не сильно досаждают. До поры до времени. Пока не столкнётесь со степенями с рациональными показателями да логарифмами. А вот там…. Давишь, давишь калькулятор, а он все полное табло каких-то циферок кажет. Приходится головой думать, как в третьем классе.

Давайте уже разберёмся с дробями, наконец! Ну сколько можно в них путаться!? Тем более, это всё просто и логично. Итак, какие бывают дроби?

Виды дробей. Преобразования.

Дроби бывают трёх видов.

1. Обыкновенные дроби , например:

Иногда вместо горизонтальной чёрточки ставят наклонную черту: 1/2, 3/4, 19/5, ну, и так далее. Здесь мы часто будем таким написанием пользоваться. Верхнее число называется числителем , нижнее - знаменателем. Если вы постоянно путаете эти названия (бывает...), скажите себе с выражением фразу: "Ззззз апомни! Ззззз наменатель - вниззззз у!" Глядишь, всё и ззззапомнится.)

Чёрточка, что горизонтальная, что наклонная, означает деление верхнего числа (числителя) на нижнее (знаменатель). И всё! Вместо чёрточки вполне можно поставить знак деления - две точки.

Когда деление возможно нацело, это надо делать. Так, вместо дроби "32/8" гораздо приятнее написать число "4". Т.е. 32 просто поделить на 8.

32/8 = 32: 8 = 4

Я уж и не говорю про дробь "4/1". Которая тоже просто "4". А если уж не делится нацело, так и оставляем, в виде дроби. Иногда приходится обратную операцию проделывать. Делать из целого числа дробь. Но об этом далее.

2. Десятичные дроби , например:

Именно в таком виде нужно будет записывать ответы на задания "В".

3. Смешанные числа , например:

Смешанные числа практически не используются в старших классах. Для того, чтобы с ними работать, их всяко надо переводить в обыкновенные дроби. Но это точно надо уметь делать! А то попадётся такое число в задачке и зависните... На пустом месте. Но мы-то вспомним эту процедуру! Чуть ниже.

Наиболее универсальны обыкновенные дроби . С них и начнём. Кстати, если в дроби стоят всякие логарифмы, синусы и прочие буковки, это ничего не меняет. В том смысле что все действия с дробными выражениями ничем не отличаются от действий с обыкновенными дробями !

Основное свойство дроби.

Итак, поехали! Для начала я вас удивлю. Всё многообразие преобразований дробей обеспечивается одним-единственным свойством! Оно так и называется, основное свойство дроби . Запоминайте: если числитель и знаменатель дроби умножить (разделить) на одно и то же число, дробь не изменится. Т.е:

Понятно, что писать можно дальше, до посинения. Синусы и логарифмы пусть вас не смущают, с ними дальше разберёмся. Главное понять, что все эти разнообразные выражения есть одна и та же дробь . 2/3.

А оно нам надо, все эти превращения? Ещё как! Сейчас сами увидите. Для начала употребим основное свойство дроби для сокращения дробей . Казалось бы, вещь элементарная. Делим числитель и знаменатель на одно и то же число и все дела! Ошибиться невозможно! Но... человек - существо творческое. Ошибиться везде может! Особенно, если приходится сокращать не дробь типа 5/10, а дробное выражение со всякими буковками.

Как правильно и быстро сокращать дроби, не делая лишней работы, можно прочитать в особом Разделе 555 .

Нормальный ученик не заморачивается делением числителя и знаменателя на одно и то же число (или выражение)! Он просто зачеркивает всё одинаковое сверху и снизу! Здесь-то и таится типичная ошибка, ляп, если хотите.

Например, надо упростить выражение:

Тут и думать нечего, зачеркиваем букву "а" сверху и двойку снизу! Получаем:

Все правильно. Но реально вы поделили весь числитель и весь знаменатель на "а". Если вы привыкли просто зачеркивать, то, впопыхах, можете зачеркнуть "а" в выражении

и получить снова

Что будет категорически неверно. Потому что здесь весь числитель на "а" уже не делится ! Эту дробь сократить нельзя. Кстати, такое сокращение – это, гм… серьезный вызов преподавателю. Такого не прощают! Запомнили? При сокращении делить надо весь числитель и весь знаменатель!

Сокращение дробей сильно облегчает жизнь. Получится где-нибудь у вас дробь, к примеру 375/1000. И как теперь с ней дальше работать? Без калькулятора? Умножать, скажем, складывать, в квадрат возводить!? А если не полениться, да аккуратненько сократить на пять, да ещё на пять, да ещё... пока сокращается, короче. Получим 3/8! Куда приятнее, правда?

Основное свойство дроби позволяет переводить обыкновенные дроби в десятичные и наоборот без калькулятора ! Это важно на ЕГЭ, верно?

Как переводить дроби из одного вида в другой.

С десятичными дробями всё просто. Как слышится, так и пишется! Скажем, 0,25. Это ноль целых, двадцать пять сотых. Так и пишем: 25/100. Сокращаем (делим числитель и знаменатель на 25), получаем обычную дробь: 1/4. Всё. Бывает, и не сокращается ничего. Типа 0,3. Это три десятых, т.е. 3/10.

А если целых - не ноль? Ничего страшного. Записываем всю дробь без всяких запятых в числитель, а в знаменатель - то, что слышится. Например: 3,17. Это три целых, семнадцать сотых. Пишем в числитель 317, а в знаменатель 100. Получаем 317/100. Ничего не сокращается, значит всё. Это ответ. Элементарно, Ватсон! Из всего сказанного полезный вывод: любую десятичную дробь можно превратить в обыкновенную .

А вот обратное преобразование, обыкновенной в десятичную, некоторые без калькулятора не могут сделать. А надо! Как вы ответ записывать будете на ЕГЭ!? Внимательно читаем и осваиваем этот процесс.

Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обычная дробь имеет такой знаменатель, проблем нет. Например, 4/10 = 0,4. Или 7/100 = 0,07. Или 12/10 = 1,2. А если в ответе на задание раздела "В" получилось 1/2? Что в ответ писать будем? Там десятичные требуются...

Вспоминаем основное свойство дроби ! Математика благосклонно позволяет умножать числитель и знаменатель на одно и то же число. На любое, между прочим! Кроме нуля, разумеется. Вот и применим это свойство себе на пользу! На что можно умножить знаменатель, т.е. 2 чтобы он стал 10, или 100, или 1000 (поменьше лучше, конечно...)? На 5, очевидно. Смело умножаем знаменатель (это нам надо) на 5. Но, тогда и числитель надо умножить тоже на 5. Это уже математика требует! Получим 1/2 = 1х5/2х5 = 5/10 = 0,5. Вот и всё.

Однако, знаменатели всякие попадаются. Попадётся, например дробь 3/16. Попробуй, сообрази тут, на что 16 умножить, чтоб 100 получилось, или 1000... Не получается? Тогда можно просто разделить 3 на 16. За отсутствием калькулятора делить придётся уголком, на бумажке, как в младших классах учили. Получим 0,1875.

А бывают и совсем скверные знаменатели. Например, дробь 1/3 ну никак не превратишь в хорошую десятичную. И на калькуляторе, и на бумажке, мы получим 0,3333333... Это значит, что 1/3 в точную десятичную дробь не переводится . Так же, как и 1/7, 5/6 и так далее. Много их, непереводимых. Отсюда ещё один полезный вывод. Не каждая обыкновенная дробь переводится в десятичную !

Кстати, это полезная информация для самопроверки. В разделе "В" в ответ надо десятичную дробь записывать. А у вас получилось, например, 4/3. Эта дробь не переводится в десятичную. Это означает, что где-то вы ошиблись по дороге! Вернитесь, проверьте решение.

Итак, с обыкновенными и десятичными дробями разобрались. Осталось разобраться со смешанными числами. Для работы с ними их всяко нужно перевести в обыкновенные дроби. Как это сделать? Можно поймать шестиклассника и спросить у него. Но не всегда шестиклассник окажется под руками... Придётся самим. Это несложно. Надо знаменатель дробной части умножить на целую часть и прибавить числитель дробной части. Это будет числитель обычной дроби. А знаменатель? Знаменатель останется тем же самым. Звучит сложно, но на деле всё элементарно. Смотрим пример.

Пусть в задачке вы с ужасом увидели число:

Спокойно, без паники соображаем. Целая часть - это 1. Единица. Дробная часть - 3/7. Стало быть, знаменатель дробной части - 7. Этот знаменатель и будет знаменателем обыкновенной дроби. Считаем числитель. 7 умножаем на 1 (целая часть) и прибавляем 3 (числитель дробной части). Получим 10. Это будет числитель обыкновенной дроби. Вот и всё. Еще проще это выглядит в математической записи:

Ясненько? Тогда закрепите успех! Переведите в обыкновенные дроби. У вас должно получится 10/7, 7/2, 23/10 и 21/4.

Обратная операция - перевод неправильной дроби в смешанное число - в старших классах редко требуется. Ну если уж... И если Вы - не в старших классах - можете заглянуть в особый Раздел 555 . Там же, кстати, и про неправильные дроби узнаете.

Ну вот, практически и всё. Вы вспомнили виды дробей и поняли, как переводить их из одного вида в другой. Остаётся вопрос: зачем это делать? Где и когда применять эти глубокие познания?

Отвечаю. Любой пример сам подсказывает необходимые действия. Если в примере смешались в кучу обыкновенные дроби, десятичные, да ещё и смешанные числа, переводим всё в обыкновенные дроби. Это всегда можно сделать . Ну а если написано, что-нибудь типа 0,8 + 0,3, то так и считаем, безо всякого перевода. Зачем нам лишняя работа? Мы выбираем тот путь решения, который удобен нам !

Если в задании сплошь десятичные дроби, но гм... злые какие-то, перейдите к обыкновенным, попробуйте! Глядишь, всё и наладится. Например, придется в квадрат возводить число 0,125. Не так-то просто, если от калькулятора не отвыкли! Мало того, что числа перемножать столбиком надо, так ещё думай, куда запятую вставить! В уме точно не получится! А если перейти к обыкновенной дроби?

0,125 = 125/1000. Сокращаем на 5 (это для начала). Получаем 25/200. Ещё раз на 5. Получаем 5/40. О, ещё сокращается! Снова на 5! Получаем 1/8. Легко возводим в квадрат (в уме!) и получаем 1/64. Всё!

Подведём итоги этого урока.

1. Дроби бывают трёх видов. Обыкновенные, десятичные и смешанные числа.

2. Десятичные дроби и смешанные числа всегда можно перевести в обыкновенные дроби. Обратный перевод не всегда возможен.

3. Выбор вида дробей для работы с заданием зависит от этого самого задания. При наличии разных видов дробей в одном задании, самое надёжное - перейти к обыкновенным дробям.

Теперь можно потренироваться. Для начала переведите эти десятичные дроби в обыкновенные:

3,8; 0,75; 0,15; 1,4; 0,725; 0,012

Должны получиться вот такие ответы (в беспорядке!):

На этом и завершим. В этом уроке мы освежили в памяти ключевые моменты по дробям. Бывает, правда, что освежать особо нечего...) Если уж кто совсем крепко забыл, или ещё не освоил... Тем можно пройти в особый Раздел 555 . Там все основы подробненько расписаны. Многие вдруг всё понимать начинают. И решают дроби с лёту).

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

В математике дробь - это число, состоящее из одной или нескольких частей (долей) единицы. По форме записи дроби делятся на обыкновенные (пример \frac{5}{8}) и десятичные (например 123,45).

Определение. Обыкновенная дробь (или простая дробь)

Обыкновенной (простой) дробью называется число вида \pm\frac{m}{n} где m и n – натуральные числа. Число m называется числителем этой дроби, а число n – её знаменателем .

Горизонтальная или косая черта обозначает знак деления, то есть \frac{m}{n}={}^m/n=m:n

Обыкновенные дроби делятся на два вида: правильные и неправильные.

Определение. Правильная и неправильная дроби

Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Например, \frac{9}{11} , ведь 9

Неправильной называется дробь, у которой модуль числителя больше или равен модулю знаменателя. Такая дробь представляет собой рациональное число, по модулю большее или равное единице. Примером будут дроби \frac{11}{2} , \frac{2}{1} , -\frac{7}{5} , \frac{1}{1}

Наряду с неправильной дробью существует иная запись числа, которая называется смешанной дробью (смешанным числом). Такая дробь не является обыкновенной.

Определение. Смешанная дробь (смешанное число)

Смешанной дробью называется дробь, записанная в виде целого числа и правильной дроби и понимается как сумма этого числа и дроби. Например, 2\frac{5}{7}

(запись в виде смешанного числа) 2\frac{5}{7}=2+\frac{5}{7}=\frac{14}{7}+\frac{5}{7}=\frac{19}{7} (запись в виде неправильной дроби)

Дробь является всего лишь записью числа. Одному и тому же числу могут соответствовать разные дроби, как обыкновенные, так и десятичные. Сформируем признак равенства двух обыкновенных дробей.

Определение. Признак равенства дробей

Две дроби \frac{a}{b} и \frac{c}{d} являются равными , если a\cdot d=b\cdot c . Например, \frac{2}{3}=\frac{8}{12} так как 2\cdot12=3\cdot8

Из указанного признака следует основное свойство дроби.

Свойство. Основное свойство дроби

Если числитель и знаменатель данной дроби умножить или разделить на одно и то же число, неравное нулю, то получится дробь, равная данной.

\frac{A}{B}=\frac{A\cdot C}{B\cdot C}=\frac{A:K}{B:K};\quad C \ne 0,\quad K \ne 0

С помощью основного свойства дроби можно заменить данную дробь другой дробью, равной данной, но с меньшими числителем и знаменателем. Такая замена называется сокращением дроби. Например, \frac{12}{16}=\frac{6}{8}=\frac{3}{4} (здесь числитель и знаменатель разделили сначала на 2, а потом ещё на 2). Сокращение дроби можно провести тогда и только тогда, когда её числитель и знаменатель не являются взаимно простыми числами. Если же числитель и знаменатель данной дроби взаимно просты, то дробь сократить нельзя, например, \frac{3}{4} – несократимая дробь.

Правила для положительных дробей:

Из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше. Например, \frac{3}{15}

Из двух дробей с одинаковыми числителями больше та дробь, знаменатель которой меньше. Например, \frac{4}{11}>\frac{4}{13} .

Чтобы сравнить две дроби с разными числителями и знаменателями, нужно преобразовать обе дроби так, чтобы их знаменатели стали одинаковыми. Такое преобразование называется приведением дробей к общему знаменателю.

Данная тема достаточно важна на основных свойствах дробей основана вся дальнейшая математика и алгебра. Рассмотренные свойства дробей, не смотря на свою важность очень просты.

Чтобы понять основные свойства дробей рассмотрим окружность.

На окружности видно, что 4 части или закрашены из восьми возможных. Запишем полученную дробь \(\frac{4}{8}\)

На следующей окружности видно, что закрашена одна часть из двух возможных. Запишем получившеюся дробь \(\frac{1}{2}\)

Если внимательно приглядимся, то увидим, что в первом случае, что во втором случае у нас закрашено половина круга, поэтому полученные дроби равны \(\frac{4}{8} = \frac{1}{2}\), то есть это одно и тоже число.

Как же это доказать математически? Очень просто, вспомним таблицу умножения и распишем первую дробь на множители.

\(\frac{4}{8} = \frac{1 \cdot \color{red} {4}}{2 \cdot \color{red} {4}} = \frac{1}{2} \cdot \color{red} {\frac{4}{4}} =\frac{1}{2} \cdot \color{red}{1} = \frac{1}{2}\)

Что мы сделали? Расписали числитель и знаменатель на множители \(\frac{1 \cdot \color{red} {4}}{2 \cdot \color{red} {4}}\), а потом разделили дроби \(\frac{1}{2} \cdot \color{red} {\frac{4}{4}}\). Четыре поделить на четыре это 1, а единица умноженное на любое число это и есть само число. То что мы проделали в приведенном примере называется сокращением дробей .

Посмотрим еще один пример и сократим дробь.

\(\frac{6}{10} = \frac{3 \cdot \color{red} {2}}{5 \cdot \color{red} {2}} = \frac{3}{5} \cdot \color{red} {\frac{2}{2}} =\frac{3}{5} \cdot \color{red}{1} = \frac{3}{5}\)

Мы опять расписали числитель и знаменатель на множители и одинаковый числа в числители и знаменатели сократили. То есть два деленное на два дало единицу, а единица умноженная на любое число дает тоже самое число.

Основное свойство дроби.

Отсюда следует основное свойство дроби:

Если и числитель, и знаменатель дроби умножить на одно и тоже число (кроме нуля), то величина дроби не изменится.

\(\bf \frac{a}{b} = \frac{a \cdot n}{b \cdot n}\)

Также можно дроби числитель и знаменатель делить на одно и тоже число одновременно.
Рассмотрим пример:

\(\frac{6}{8} = \frac{6 \div \color{red} {2}}{8 \div \color{red} {2}} = \frac{3}{4}\)

Если и числитель, и знаменатель дроби делить на одно и тоже число (кроме нуля), то величина дроби не изменится.

\(\bf \frac{a}{b} = \frac{a \div n}{b \div n}\)

Дроби у которых есть и в числители, и в знаменатели общие простые делители называются сократимыми дробями .

Пример сократимой дроби: \(\frac{2}{4}, \frac{6}{10}, \frac{9}{15}, \frac{10}{5}, …\)

Так же есть и несократимые дроби .

Несократимая дробь – это дробь у которые нет в числители и знаменатели общих простых делителей.

Пример несократимой дроби: \(\frac{1}{2}, \frac{3}{5}, \frac{5}{7}, \frac{13}{5}, …\)

Любое число можно представить в виде дроби, потому что любое число делиться на единицу, например:

\(7 = \frac{7}{1}\)

Вопросы к теме:
Как вы думаете любую можно дробь сократить или нет?
Ответ: нет, бывают сократимые дроби и несократимые дроби.

Проверьте справедливо ли равенство: \(\frac{7}{11} = \frac{14}{22}\)?
Ответ: распишем дробь \(\frac{14}{22} = \frac{7 \cdot 2}{11 \cdot 2} = \frac{7}{11}\) , да справедливо.

Пример №1:
а) Найдите дробь со знаменателем 15, равную дроби \(\frac{2}{3}\) .
б) Найдите дробь с числителем 8, равную дроби \(\frac{1}{5}\) .

Решение:
а) Нам нужно чтобы в знаменателе стояло число 15. Сейчас в знаменателе число 3. На какое число нужно умножить цифру 3, чтобы получить 15? Вспомним таблицу умножения 3⋅5. Нам надо воспользоваться основным свойством дробей и умножить и числитель, и знаменатель дроби \(\frac{2}{3}\) на 5.

\(\frac{2}{3} = \frac{2 \cdot 5}{3 \cdot 5} = \frac{10}{15}\)

б) Нам нужно чтобы в числителе стояло число 8. Сейчас в числители стоит число 1. На какое число нужно умножить цифру 1, чтобы получить 8? Конечно, 1⋅8. Нам надо воспользоваться основным свойством дробей и умножить и числитель, и знаменатель дроби \(\frac{1}{5}\) на 8. Получим:

\(\frac{1}{5} = \frac{1 \cdot 8}{5 \cdot 8} = \frac{8}{40}\)

Пример №2:
Найдите несократимую дробь, равную дроби: а)\(\frac{16}{36}\), б) \(\frac{10}{25}\) .

Решение:
а) \(\frac{16}{36} = \frac{4 \cdot 4}{9 \cdot 4} = \frac{4}{9}\)

б) \(\frac{10}{25} = \frac{2 \cdot 5}{5 \cdot 5} = \frac{2}{5}\)

Пример №3:
Запишите число в виде дроби: а) 13 б)123

Решение:
а) \(13 = \frac{13} {1}\)

б) \(123 = \frac{123} {1}\)


Подробно разобрано основное свойство дроби , дана его формулировка, приведено доказательство и поясняющий пример. Также рассмотрено применение основного свойства дроби при сокращении дробей и приведении дробей к новому знаменателю.

Навигация по странице.

Основное свойство дроби – формулировка, доказательство и поясняющие примеры

Давайте рассмотрим пример, иллюстрирующий основное свойство дроби. Пусть у нас есть квадрат, разделенный на 9 «больших» квадратов, а каждый из этих «больших» квадратов разделен на 4 «маленьких» квадрата. Таким образом, можно также говорить, что исходный квадрат разделен на 4·9=36 «маленьких» квадратов. Закрасим 5 «больших» квадратов. При этом закрашенными окажутся 4·5=20 «маленьких» квадратов. Приведем рисунок, отвечающий нашему примеру.

Закрашенная часть составляет 5/9 исходного квадрата, или, что то же самое, 20/36 исходного квадрата, то есть, дроби 5/9 и 20/36 равны: или . Из этих равенств, а также из равенств 20=5·4 , 36=9·4 , 20:4=5 и 36:4=9 следует, что и .

Для закрепления разобранного материала рассмотрим решение примера.

Пример.

Числитель и знаменатель некоторой обыкновенной дроби умножили на 62 , после чего числитель и знаменатель полученной дроби разделили на 2 . Равна ли полученная дробь исходной?

Решение.

Умножение числителя и знаменателя дроби на любое натуральное число, в частности на 62 , дает дробь, которая в силу основного свойства дроби, равна исходной. Основное свойство дроби позволяет утверждать и то, что после деления числителя и знаменателя полученной дроби на 2 получится дробь, которая будет равна исходной дроби.

Ответ:

Да, полученная дробь равна исходной.

Применение основного свойства дроби

Основное свойство дроби в основном применяется в двух случаях: во-первых, при приведении дробей к новому знаменателю, и, во-вторых, при сокращении дробей.

Приведение дроби к новому знаменателю – это замена исходной дроби равной ей дробью, но с большим числителем и знаменателем. Для приведения дроби к новому знаменателю и числитель, и знаменатель дроби умножается на некоторое натуральное число, при этом, согласно основному свойству дроби, получается дробь, равная исходной, но с другим числителем и знаменателем. Без приведения дробей к новому знаменателю не обойтись при выполнении Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

Энциклопедичный YouTube

  • 1 / 5

    Обыкновенная (или простая ) дробь - запись рационального числа в виде ± m n {\displaystyle \pm {\frac {m}{n}}} или ± m / n , {\displaystyle \pm m/n,} где n ≠ 0. {\displaystyle n\neq 0.} Горизонтальная или косая черта обозначает знак деления, в результате чего получается частное. Делимое называется числителем дроби, а делитель - знаменателем .

    Обозначения обыкновенных дробей

    Есть несколько видов записи обыкновенных дробей в печатном виде:

    Правильные и неправильные дроби

    Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Дробь, не являющаяся правильной, называется неправильной , и представляет рациональное число, по модулю большее или равное единице.

    Например, дроби 3 5 {\displaystyle {\frac {3}{5}}} , 7 8 {\displaystyle {\frac {7}{8}}} и - правильные дроби, в то время как 8 3 {\displaystyle {\frac {8}{3}}} , 9 5 {\displaystyle {\frac {9}{5}}} , 2 1 {\displaystyle {\frac {2}{1}}} и 1 1 {\displaystyle {\frac {1}{1}}} - неправильные дроби. Всякое отличное от нуля целое число можно представить в виде неправильной обыкновенной дроби со знаменателем 1.

    Смешанные дроби

    Дробь, записанная в виде целого числа и правильной дроби, называется смешанной дробью и понимается как сумма этого числа и дроби. Любое рациональное число можно записать в виде смешанной дроби. В противоположность смешанной дроби, дробь, содержащая лишь числитель и знаменатель, называется простой .

    Например, 2 3 7 = 2 + 3 7 = 14 7 + 3 7 = 17 7 {\displaystyle 2{\frac {3}{7}}=2+{\frac {3}{7}}={\frac {14}{7}}+{\frac {3}{7}}={\frac {17}{7}}} . В строгой математической литературе такую запись предпочитают не использовать из-за схожести обозначения смешанной дроби с обозначением произведения целого числа на дробь, а также из-за более громоздкой записи и менее удобных вычислений.

    Составные дроби

    Многоэтажной, или составной, дробью называется выражение, содержащее несколько горизонтальных (или реже - наклонных) черт:

    1 2 / 1 3 {\displaystyle {\frac {1}{2}}/{\frac {1}{3}}} или 1 / 2 1 / 3 {\displaystyle {\frac {1/2}{1/3}}} или 12 3 4 26 {\displaystyle {\frac {12{\frac {3}{4}}}{26}}}

    Десятичные дроби

    Десятичной дробью называют позиционную запись дроби. Она выглядит следующим образом:

    ± a 1 a 2 … a n , b 1 b 2 … {\displaystyle \pm a_{1}a_{2}\dots a_{n}{,}b_{1}b_{2}\dots }

    Пример: 3,141 5926 {\displaystyle 3{,}1415926} .

    Часть записи, которая стоит до позиционной запятой, является целой частью числа (дроби), а стоящая после запятой - дробной частью . Всякую обыкновенную дробь можно преобразовать в десятичную, которая в этом случае либо имеет конечное число знаков после запятой, либо является периодической дробью .

    Вообще говоря, для позиционной записи числа́ можно использовать не только десятичную систему счисления, но и другие (в том числе и специфические, такие, как фибоначчиева).

    Значение дроби и основное свойство дроби

    Дробь является всего лишь записью числа. Одному и тому же числу могут соответствовать разные дроби, как обыкновенные, так и десятичные.

    0 , 999... = 1 {\displaystyle 0,999...=1} - две разные дроби соответствуют одному числу.

    Действия с дробями

    В этом разделе рассматриваются действия над обыкновенными дробями. О действиях над десятичными дробями см. Десятичная дробь .

    Приведение к общему знаменателю

    Для сравнения, сложения и вычитания дробей их следует преобразовать (привести ) к виду с одним и тем же знаменателем. Пусть даны две дроби: a b {\displaystyle {\frac {a}{b}}} и c d {\displaystyle {\frac {c}{d}}} . Порядок действий:

    После этого знаменатели обеих дробей совпадают (равны M ). Вместо наименьшего общего кратного можно в простых случаях взять в качестве M любое другое общее кратное, например, произведение знаменателей. Пример см. ниже в разделе Сравнение.

    Сравнение

    Чтобы сравнить две обыкновенные дроби, следует привести их к общему знаменателю и сравнить числители получившихся дробей. Дробь с бо́льшим числителем будет больше.

    Пример. Сравниваем 3 4 {\displaystyle {\frac {3}{4}}} и 4 5 {\displaystyle {\frac {4}{5}}} . НОК(4, 5) = 20. Приводим дроби к знаменателю 20.

    3 4 = 15 20 ; 4 5 = 16 20 {\displaystyle {\frac {3}{4}}={\frac {15}{20}};\quad {\frac {4}{5}}={\frac {16}{20}}}

    Следовательно, 3 4 < 4 5 {\displaystyle {\frac {3}{4}}<{\frac {4}{5}}}

    Сложение и вычитание

    Чтобы сложить две обыкновенные дроби, следует привести их к общему знаменателю. Затем сложить числители, а знаменатель оставить без изменений:

    1 2 {\displaystyle {\frac {1}{2}}} + = + = 5 6 {\displaystyle {\frac {5}{6}}}

    НОК знаменателей (здесь 2 и 3) равно 6. Приводим дробь 1 2 {\displaystyle {\frac {1}{2}}} к знаменателю 6, для этого числитель и знаменатель надо умножить на 3.
    Получилось 3 6 {\displaystyle {\frac {3}{6}}} . Приводим дробь 1 3 {\displaystyle {\frac {1}{3}}} к тому же знаменателю, для этого числитель и знаменатель надо умножить на 2. Получилось 2 6 {\displaystyle {\frac {2}{6}}} .
    Чтобы получить разность дробей, их также надо привести к общему знаменателю, а затем вычесть числители, знаменатель при этом оставить без изменений:

    1 2 {\displaystyle {\frac {1}{2}}} - = - 1 4 {\displaystyle {\frac {1}{4}}} = 1 4 {\displaystyle {\frac {1}{4}}}

    НОК знаменателей (здесь 2 и 4) равно 4. Приводим дробь 1 2 {\displaystyle {\frac {1}{2}}} к знаменателю 4, для этого надо числитель и знаменатель умножить на 2. Получаем 2 4 {\displaystyle {\frac {2}{4}}} .

    Умножение и деление

    Чтобы умножить две обыкновенные дроби, нужно перемножить их числители и знаменатели:

    a b ⋅ c d = a c b d . {\displaystyle {\frac {a}{b}}\cdot {\frac {c}{d}}={\frac {ac}{bd}}.}

    В частности, чтобы умножить дробь на натуральное число, надо числитель умножить на число, а знаменатель оставить тем же:

    2 3 ⋅ 3 = 6 3 = 2 {\displaystyle {\frac {2}{3}}\cdot 3={\frac {6}{3}}=2}

    В общем случае, числитель и знаменатель результирующей дроби могут не быть взаимно простыми, и может потребоваться сокращение дроби, например:

    5 8 ⋅ 2 5 = 10 40 = 1 4 . {\displaystyle {\frac {5}{8}}\cdot {\frac {2}{5}}={\frac {10}{40}}={\frac {1}{4}}.}

    Чтобы поделить одну обыкновенную дробь на другую, нужно умножить первую на дробь, обратную второй:

    a b: c d = a b ⋅ d c = a d b c , c ≠ 0. {\displaystyle {\frac {a}{b}}:{\frac {c}{d}}={\frac {a}{b}}\cdot {\frac {d}{c}}={\frac {ad}{bc}},\quad c\neq 0.}

    Например,

    1 2: 1 3 = 1 2 ⋅ 3 1 = 3 2 . {\displaystyle {\frac {1}{2}}:{\frac {1}{3}}={\frac {1}{2}}\cdot {\frac {3}{1}}={\frac {3}{2}}.}

    Преобразование между разными форматами записи

    Чтобы преобразовать обыкновенную дробь в дробь десятичную, следует разделить числитель на знаменатель. Результат может иметь конечное число десятичных знаков, но может быть и бесконечной



Новое на сайте

>

Самое популярное