Домой Калькуляторы Как работает дренчерная система пожаротушения. Дренчерная завеса - что это такое? Установка дренчерной завесы у дверного проема

Как работает дренчерная система пожаротушения. Дренчерная завеса - что это такое? Установка дренчерной завесы у дверного проема

Одной из современных тенденций, прослеживающихся при строительстве складских, производственных, торговых, развлекательных и других объектов, является увеличение занимаемых ими площадей, что влечет за собой рост пожарной нагрузки, увеличение длины путей эвакуации и, как следствие, увеличение пожарной опасности и возможного ущерба от пожара.
В последние несколько лет в различных документах, направленных на снижение пожарной опасности, в том числе в технических условиях, отражающих специфику противопожарной защиты объекта, технических решениях в области противопожарной безопасности, различных компенсирующих мероприятиях все чаще встречается такое техническое решение, как дренчерная завеса. При этом отсутствует опыт эксплуатации таких завес (хотя длина некоторых из них достигает несколько сотен метров), отсутствует информация о выполнении дренчерными завесами своих функций при реальных пожарах. В нормативных документах вопросы необходимости применения, особенности проектирования таких завес отражены недостаточно. Мало исследованы возможности использования дренчерных завес как компенсирующих мероприятий для предотвращения распространения огня, дыма за пределы дренчерной завесы. Анализу существующих представлений об эффективности применения дренчерных завес и посвящается настоящая статья.

1. Сущность, назначение, классификация и область применения дренчерных завес

ГОСТ дает понятия водяных завес и их физических параметров:

Водяная завеса: поток воды или ее растворов, препятствующий распространению через него пожара и / или способствующий предупреждению прогрева технологического оборудования до предельно допустимых температур.
Ширина завесы: фронтальная протяженность защищаемой площади, в пределах которой обеспечивается заданное значение удельного расхода.
Глубина завесы: перпендикулярная к ширине завесы протяженность защищаемой площади, в пределах которой обеспечивается заданный удельный расход.
Удельный расход водяной завесы: расход, приходящийся на один погонный метр ширины завесы в единицу времени.
Водяные завесы выполняют функции охлаждения и предотвращения распространения пожара и его опасных факторов (ОФП) через оконные, дверные и технологические проемы, за пределы защищаемого оборудования, зоны или помещений, а также для обеспечения безопасных условий для эвакуации людей из горящих помещений. Таким образом, водяные завесы могут выполнять раздельно или в совокупности две основные функции:

  • экранирование тепловых потоков, дыма и токсичных продуктов горения с целью исключения распространения пожара и его опасных факторов за пределы водяных завес;
  • охлаждение технологического оборудования с целью исключения нагрева его конструкций до предельно допустимых температур.

Водяные завесы подразделяются объемные, контактные и поверхностные.
Объемная завеса — пленочный, капельный или струйный поток, направленный непосредственно оросителем по вертикальной плоскости защищаемого пространства, обеспечивающий неприемлемые условия для распространения через него пожара.
Контактная завеса — поток, направленный непосредственно оросителем на преграду, с которой жидкость в раздробленном (капельном или струйном) виде падает вниз под действием гравитационных сил в атмосфере окружающей среды, и обеспечивает неприемлемые условия для распространения через него пожара.
Поверхностная завеса — поток, направленный непосредственно оросителем на преграду, по которой жидкость в раздробленном (капельном или струйном) или пленочном виде стекает вниз под действием гравитационных сил по защищаемой поверхности, и способствующий предупреждению прогрева технологического оборудования до предельно допустимых температур.
Примером объемных завес являются водяные завесы, устраиваемые для защиты театральных занавесей, примером контактных — завесы для оконных проемов, примером поверхностных — завесы для орошения резервуаров, причем в последнем случае на горящем резервуаре реализуется функция охлаждения стенок, а на смежном с горящим — функция экранирования теплового потока.

Дренчерные завесы можно классифицировать:
по области их применения:
1.1. в театрах, для защиты проемов портала сцены, арьерcцены, карманов сцены, склада декораций .
Дренчеры устанавливают под колосниками сцены и арьерсцены, под нижним ярусом рабочих галерей и соединяющими их нижними переходными мостиками, в сейфе скатанных декораций и во всех проемах сцены, включая проемы портала, карманов и арьерсцены, а также части трюма, занятой конструкциями встроенного оборудования сцены и подъемно-опускных устройств. Орошение противопожарного занавеса следует предусматривать со стороны сцены. Расстановку дренчерных оросителей производят, исходя из следующих условий: расход воды на орошение проемов сцены принимается 0,5 л / с на 1 м проема, на орошение портала сцены - не менее 0.5 л / с на 1 м ширины портала при его высоте до 7.5 м и 0.7 л / с на 1 м при высоте более 7.5.
1.2. вместо противопожарных стен 1-го типа для деления зданий на пожарные отсеки в общественных, административных и других зданиях (рис. 1).

Рис.1. Дренчерная завеса в торговом центре
В зданиях вокзалов вместо противопожарных стен допускается устройство водяных дренчерных завес в две нити, расположенных на расстоянии 0.5 м и обеспечивающих интенсивность орошения не менее 1 л / с на 1 м длины завес. Время работы завес - не менее 1 ч.
1.3. для сообщения помещений для хранения автомобилей на этаже с помещениями другого назначения в стоянках автомобилей .
Сообщение помещений для хранения автомобилей на этаже с помещениями другого назначения или смежного пожарного отсека допускается через тамбуршлюз с подпором воздуха при пожаре или с устройством дренчерной завесы над проемом со стороны автостоянки.
1.4. для защиты постоянно открытых технологических проемов в производственных и складских зданиях.
При невозможности устройства в противопожарных преградах дверей, ворот, люков и клапанов - в противопожарных преградах, отделяющих помещения категории В от других помещений, следует предусматривать комплекс мероприятий по предотвращению распространения пожара и проникания горючих газов, паров легковоспламеняющихся и горючих жидкостей, пыли, волокон, способных образовывать взрывоопасные концентрации, в смежные этажи и помещения. Эффективность этих мероприятий должна быть обоснована.
1.5. в местах примыкания эвакуационных лестниц к галереям и эстакадам поперек конвейерных лент в складах лесных материалов, а также в местах примыкания галерей и эстакад к зданиям .
В местах примыкания галерей и эстакад к зданиям и помещениям категорий А, Б и В, перегрузочным узлам следует предусматривать дренчерные завесы с расходом воды не менее 1 л / с на 1 м ширины проема либо открытые тамбур-шлюзы длиной не менее 4 м, оборудованные автоматическими установками пожаротушения с расходом воды 1 л / с на 1 м2 пола тамбура. В местах примыкания эвакуационных лестниц к галереям и эстакадам поперек конвейерных лент следует предусматривать дренчерные завесы с сухотрубами диаметром 77 мм, оборудованными пожарными соединительными головками для подключения пожарных машин.
1.6. для отделения технологической площадки от танкеров на причальных комплексах для перевалки нефти и нефтепродуктов (рис. 2);

Рис.2. Дренчерная завеса на причальном комплексе
1.7. для охлаждения горящего и соседних резервуаров в резервуарных парках (рис.3).
Стационарная установка охлаждения резервуара состоит из горизонтального секционного кольца орошения (оросительного трубопровода с устройствами для распыления воды), размещаемого в верхнем поясе стенок резервуара, сухих стояков и горизонтальных трубопроводов, соединяющих секционное кольцо орошения с сетью противопожарного водопровода, и задвижек с ручным приводом обеспечения подачи воды при пожаре на охлаждение всей поверхности резервуара и любой ее четверти или половины (считая по периметру) в зависимости от расположения резервуаров в группе.

Рис. 3. Охлаждение резервуаров
1.8. в саунах ;
Помещение парильной следует оборудовать по периметру дренчерным устройством (из перфорированных сухотрубов, присоединенных к внутреннему водопроводу) с управлением перед входом в парильную.

по виду использованных оросителей :

  • специальные оросители для дренчерных завес в проемах (рис. 4);
  • специальные оросители для дренчерных завес на причальных комплексах;
  • обычные дренчеры;

Рис. 4. Дренчерный ороситель

по виду пуска:

  • автоматический пуск от автоматической установки пожаротушения и / или от автоматической пожарной сигнализации;
  • ручной дистанционный пуск от кнопки дистанционного пуска (электрический);
  • ручной местный пуск от кнопки ручного пуска (электрический) и / или от крана включения завесы (механический);

по нормативной интенсивности:

  • 1 л / с на 1 м длины завесы (стандартно для большинства объектов);
  • 0,7 л / с на 1 м длины завесы (используется в театрах);
  • 0,5 л / с на 1 м длины завесы (используется в театрах);
  • индивидуально для объекта в соответствии с согласованными Техническими условиями, техническими решениями, компенсирующими мероприятиями.

2. Дренчерная завеса как компенсирующее отступления от противопожарных норм мероприятие. Особенности применения дренчерных завес

В больших по площади торгово-развлекательных центрах, гипермаркетах в последние 10 лет, для того чтобы не выделять противопожарными стенами 1-го типа (REI150) пожарные отсеки и сохранить необходимую торговую или другую площадь, широко стали применяться дренчерные завесы. Длина реально проектируемых сегодня дренчерных завес, используемых в качестве компенсирующего мероприятия вместо противопожарных стен, достигает 250 м. При этом «предел огнестойкости», если так можно выразиться, дренчерной завесы, работающей по проекту, - 1 час, в лучшем случае EI60. Причем реальных исследований и огневых испытаний, подтверждающих хотя бы эти данные, проектировщиками и заказчиками не проводится. Предположим ситуацию пожара в торговом центре с хранением товара на витринах или стеллажах. Сможет ли дренчерная завеса сдерживать пожар при горении витрин или стеллажей в случае, если завеса расположена перпендикулярно им? А если завеса расположена параллельно стеллажам, и в результате металлические конструкции стеллажей через 8-15 минут развития пожара не смогли удерживать товары, и горящие товары рассыпались по торговому залу, в том числе и перелетев через дренчерную завесу? Продолжат ли они гореть в другом пожарном отсеке? Сможет ли вообще дренчерная завеса сдерживать пожар как противопожарная стена 1-го типа?

Среди проектировщиков и архитекторов отсутствует единое мнение, есть ли необходимость суммировать площади нескольких этажей, когда они объединены открытым проемом или атриумом с открытыми лестницами, эскалаторами и лифтами. Существуют технические решения ограждать открытые проемы по периметру дренчерными завесами. В этом случае с большой долей вероятности пламя, дым и токсичные продукты горения не проникнут с горящего этажа на другие этажи через открытые проемы или атриум. Однако встречаются и варианты, в которых предлагается увеличить количество спринклеров по периметру открытых проемов. Неочевидна не только эффективность, но и целесообразность такого технического решения.

При нормативной интенсивности орошения расход воды численно равен ширине постоянно открытого проема, в некоторых случаях несколько сотен литров в секунду. Например, работа дренчерной завесы в течение одного часа для защиты проема 100 м потребует расхода воды 100 л / с. Это повлечет за собой установку насосов электрической мощностью 150-200 кВт и резервуара 400 м3. При этом необходимо также учитывать, что расход дренчерной завесы необходимо суммировать с расходом воды на спринклерную установку пожаротушения и на пожарные краны внутреннего противопожарного водопровода.
Проектировщиками и заказчиками должен приниматься во внимание тот факт, что при пожаре в защищаемое помещение будет вылито те же 400 м3 воды.
Необходимо отметить, что не распространено так широко применение защитных экранов, спускающихся с перекрытия, которые могли бы быть особенно эффективны в сочетании с дренчерными завесами.

Для проектирования и применения дренчерных завес во всех других случаях, кроме , особенно в качестве компенсирующего мероприятия, организациями, имеющими лицензию, должны быть разработаны Технические условия, отражающие специфику противопожарной защиты конкретного объекта. Технические условия должны быть согласованы с ГПН МЧС России.

3. Методика проектирования и расчета дренчерных завес

Структурная схема типовой дренчерной завесы изображена на рис. 5. Методика расчета дренчерных завес приведена в . Специальные оросители для дренчерных завес выпускаются Бийским заводом «Спецавтоматика», а также ведущими производителями пожарно-технического оборудования в мире, хотя в отечественной практике часто встречаются случаи проектирования водяных дренчерных завес на оросителях общего назначения. При выборе основных характеристик оросителя необходимо провести перерасчет интенсивности орошения в удельный расход, приходящийся на 1 м ширины завесы.

Рис.5. Схема дренчерной завесы: 1 – специальный дренчер; 2 – ширина проема в противопожарной преграде; 3 – реле потока; 4 – клапан (включение дренчерной завесы автоматически); 5 – кран (включение дренчерной завесы вручную на месте); 6 – прибор управления пожарный; 7 – кнопка дистанционного пуска (включение дренчерной завесы вручную дистанционно)

При этом нормативным параметром является интенсивность орошения, а проектными параметрами - вид оросителя, напор на оросителе, расстояние между оросителями, диаметр трубопровода, на котором размещены оросители, высота установки оросителей.
Для создания водяных завес используются оросители общего назначения или специальные оросители. Оросители для водяных завес обеспечивают как короткие, так и достаточно протяженные зоны орошения, т.е. орошаемая ими зона в зависимости от объекта защиты может приобретать любые размеры как по ширине, так по длине и по высоте. Основным гидравлическим параметром водяных завес является удельный расход .

Под удельным расходом понимается:
— для пространственных и контактных завес — расход, приходящийся на 1 м ширины завесы или проема;
— для поверхностных завес — расход, приходящийся на 1 м длины завесы.

Нормативное значение удельного расхода зависит от конкретных объектов защиты. Согласно СНиП 2.04.09-84 для производственных, административных и жилых зданий удельный расход должен быть не менее 1л/с м, по СНиП 2.08.02 для культурно-зрелищных учреждений — в пределах (0,5-0,7) л/с м, по СНиП 2.11.03-93 для орошения резервуаров с нефтепродуктами должен быть в пределах (0,2 — 0,75) л/с м, а при горении в обваловании максимальное значение удельного расхода составляет 1-1,1 л/с м. Сравнительную оценку эффективности различных типов оросителей между собой можно осуществлять по ширине гарантированной завесы, в пределах которой должен быть одинаковым удельный расход.

Согласно НПБ 88 и СНиП 2.08.02 давление в наиболее удаленном и высоко расположенном оросителе должно быть не менее 0,05 МПа. По существу это требование неправомерно, т.к. любой ороситель независимо от его места расположения должен обеспечить необходимый удельный расход. Поэтому величина давления должна определяться из расчета, чтобы при срабатывании оросителя в защищаемой зоне поддерживались требуемые условия орошения.

Несмотря на отсутствие статистических данных, результатов экспериментов одним из основных компенсирующих мероприятий, направленных на снижение пожарной опасности при значительном превышении площадей пожарных отсеков, является применение дренчерных завес, разделяющих помещения большой площади. Завесы получили широкое распространение, поскольку других возможностей увеличить площадь пожарного отсека, в том числе нормативных, у проектировщиков сегодня попросту нет.

Литература

  1. ГОСТ 54043-2002. Установки водяного и пенного пожаротушения автоматические. Оросители. Общие технические требования. Методы испытаний.
  2. СНИП 2.11.03-93. Склады нефти и нефтепродуктов. Противопожарные нормы.
  3. СНИП 21-02-99*. Стоянки автомобилей.
  4. СНИП 2.08.02-89*. Общественные здания и сооружения.
  5. СНИП 21?03-2003. Склады лесных материалов. Противопожарные нормы.
  6. СНИП 2.08.01-89*. Жилые здания.
  7. СНИП 31-01-2003. Здания жилые многоквартирные.
  8. ТСН 21-303-2003. Жилые здания. Требования пожарной безопасности.
  9. ВСН 12-87. Причальные комплексы для перегрузки нефти и нефтепродуктов.
  10. Мешман Л. М., Цариченко С. Г., Былинкин В. А., Алешин В. В., Губин Р. Ю. Проектирование водяных и пенных автоматических установок пожаротушения /Под общ. ред. Н. П. Копылова. - М.: ВНИИПО МЧС РФ, 2002. - 413 с.
  11. Мешман Л. М., Цариченко С. Г., Былинкин В. А. и др. Оросители водяных и пенных автоматических установок пожаротушения /Под общ. ред. Н. П. Копылова. - М.: ВНИИПО, 2002. - 315 с.
  12. НПБ 88-2001*. Установки пожаротушения и сигнализации. Нормы и правила проектирования.
  13. Ороситетель дренчерный для водяных завес «ЗВН»: Пособие по применению. - Бийск: ЗАО «ПО «Спецавтоматика», 2005.
  14. СНИП 31-05-2003. Общественные здания административного назначениия.

Порядок проектирования дренчерных завес с использованием оросителей марки «ЗВН» производства ЗАО «ПО «Спецавтоматика»

Данный документ носит рекомендательный характер и определяет последовательность расчета необходимого количества оросителей марки «ЗВН» и расстояний между ними для защиты проемов высотой до 2,5 м и любой протяженности в соответствии с главным требованием НПБ 88-2001* (п. 4.24.), касающегося завес: «Расстояние между оросителями дренчерных завес следует определять из расчета расхода воды или раствора пенообразователя 1,0 л/с на 1 м ширины проема».

Порядок проектирования

1. Выбрать тип оросителя «ЗВН» («3», «5» или «8»), принимая во внимание коэффициент производительности оросителя и ширину защищаемого проема:
— до 2 м – любой тип;
— от 2 м до 4 м – «ЗВН-5» или «ЗВН-8»;
— свыше 4 м – «ЗВН-8».

2. По таблице технических характеристик на конкретный ороситель (далее по тексту – «таблица») принять уровень давления Р (свободного напора) перед диктующим оросителем.
3. Из таблицы для оросителя выбрать ширину B (м) завесы при давлении Р и высоте установки Н (2 м или 2,5 м).
4. Определить расчетным путем расход через диктующий ороситель по формуле:

где Q – расход, л/с;
К – коэффициент производительности;
Р – принятое в п.2 давление, МПа.

5. Для оросителя выбрать из таблицы значение интенсивности I (среднего удельного расхода) на 1 м ширины завесы (учитывая Р и Н ), или определить интенсивность по формуле:
I = Q / В, (л/м * с).

6. Определить, исходя из требования «1,0 л/с на 1 м ширины проема», требуемое минимальное количество оросителей n для защиты левой и правой сторон проема по формуле:

n = 1 / I , (шт.).

Примечания.
1. Полученное значение необходимо округлить в большую сторону до ближайшего целого числа.
2. При ширине проема менее 4 м для оросителей «ЗВН-8» на данном этапе сразу принимается количество n +1 за значение N (см. ниже п. 9), а расстояние (шаг) между оросителями, высчитывается из условия расположения всех оросителей над проемом.
7. Принять расстояние l кр (м) от края проема до первого оросителя, соблюдая условие перекрытия завесой угла проема (т.е., учитывая угол распыла из оросителя при давлении Р ) и при высоте установки оросителей относительно верхнего края проема h (м):
— при h = 0 (оросители на уровне верхнего края проема) принять l кр = 0;

— при h = 0,25 м — l кр = 0,35 м (для «ЗВН-3» — l кр = 0,1 м);
— при h = 0,5 м — l кр = 0,7 м (для «ЗВН-3» — l кр = 0,2 м).
Примечание. Для проемов шириной менее 3 м рекомендуется принимать l кр =0 .

8. Определить максимальное расстояние (шаг) l между оросителями n (см. п. 6) по формуле (обозначение величин – см. выше):

9. Определить максимальное количество оросителей N (шт.) по длине проема L (м) по формуле:

Примечание. Полученное значение необходимо округлить в большую сторону до ближайшего целого числа.

10. Скорректировать значения l кр (справа и слева), чтобы они были равны, а оросители симметрично, относительно центра проема, расставлены на расстоянии l .
11. Уточнить количество оросителей N . Если значение h принято от 0,25 м до 0,5 м, а количество оросителей N ? 2п+3, то допускается средние оросители устанавливать через один с шагом 2 l .
12. Если стена между отсеками противопожарная (например, кирпичная или бетонная), то допускается устанавливать оросители в 2 ряда (по обе стороны стены), при этом расстояние между рядами оросителей должно быть не более 0,5 м.
13. Произвести гидравлический расчет секции и подобрать соответствующее оборудование.

Приложение

Пример расчета дренчерной секции-завесы

Требуется определить количество оросителей и рассчитать расстояния между ними для защиты проема высотой 2 м и шириной 10 м.
1. Выбираем оросители «ЗВН-8» с коэффициентом производительности К=0,19.
>2. Принимаем по таблице характеристик оросителя Р =0,4 МПа.
3. Оросители будем устанавливать на высоте 2,5 м над уровнем пола. Ширина завесы одного оросителя В составляет 7 м.
4. Расход через диктующий ороситель вычислим по формуле. Получим Q=1,2 л/с.
5. Рассчитаем значение интенсивности по формуле. Получим I = 0,17 л/м * с.
6. Определим минимальное количество оросителей п для защиты правой и левой сторон проема. Округлив результат до ближайшего большего целого получим п =6 шт.
7. Высота установки оросителей над проемом h = 0,5 м, следовательно примем l кр = 0,7 м.
8. Определим шаг установки оросителей по краям проема – получим l =0,56 м.
9. Определим количество оросителей по ширине всего проема. Опять же округлив, получим N =17 шт.
10. Скорректируем расстояния до крайних оросителей относительно проема. Получим расстояния l кр =1/2 * (10м – 16 l) = 0,5 м.
11. Уточним количество оросителей N . В нашем случае выполняется условие N ? 2п+3, поэтому из схемы установки оросителей следует убрать 3 шт., а 2 оросителя установить через расстояние 2 l = 1,1 м.
Результат решения графически представлен на рисунке 1.

Также, на рисунке 2, представлен фрагмент середины завесы при том же расчете, но с большой шириной проема L . Оросители, в соответствии с п.11 расчета, установлены на расстоянии 2 l = 1,1 м. Как видно из рисунка, любой участок проема находится под действием не менее 6 оросителей (т.е. минимального количества оросителей, равным п , для которого рассчитана совокупная интенсивность I не менее 1 л/м * с (см. п.6)).

Приложение

Рисунок 1. Результат расчета

Рисунок 2. Фрагмент середины завесы с оросителями, установленными с шагом 2 l .

Станислав Жаров, к.т.н., доцент;
Алексей Зархин;
Мария Митрофанова

Одной из современных тенденций, прослеживающихся при строительстве складских, производственных, торговых, развлекательных и других объектов, является увеличение занимаемых ими площадей, что влечет за собой рост пожарной нагрузки, увеличение длины путей эвакуации и, как следствие, увеличение пожарной опасности и возможного ущерба от пожара.

В последние несколько лет (статья опубликована в 2006 году) в различных документах, направленных на снижение пожарной опасности, в том числе в технических условиях, отражающих специфику противопожарной защиты объекта, технических решениях в области противопожарной безопасности, различных компенсирующих мероприятиях все чаще встречается такое техническое решение, как дренчерная завеса. При этом отсутствует опыт эксплуатации таких завес (хотя длина некоторых из них достигает несколько сотен метров), отсутствует информация о выполнении дренчерными завесами своих функций при реальных пожарах. В нормативных документах вопросы необходимости применения, особенности проектирования таких завес отражены недостаточно. Мало исследованы возможности использования дренчерных завес как компенсирующих мероприятий для предотвращения распространения огня, дыма за пределы дренчерной завесы. Анализу существующих представлений об эффективности применения дренчерных завес и посвящается настоящая статья.

1. Сущность, назначение, классификация и область применения дренчерных завес

ГОСТ дает понятия водяных завес и их физических параметров:
Водяная завеса: поток воды или ее растворов, препятствующий распространению через него пожара и / или способствующий предупреждению прогрева технологического оборудования до предельно допустимых температур.

Ширина завесы: фронтальная протяженность защищаемой площади, в пределах которой обеспечивается заданное значение удельного расхода.

Глубина завесы: перпендикулярная к ширине завесы протяженность защищаемой площади, в пределах которой обеспечивается заданный удельный расход.

Удельный расход водяной завесы: расход, приходящийся на один погонный метр ширины завесы в единицу времени.

Водяные завесы выполняют функции охлаждения и предотвращения распространения пожара и его опасных факторов (ОФП) через оконные, дверные и технологические проемы, за пределы защищаемого оборудования, зоны или помещений, а также для обеспечения безопасных условий для эвакуации людей из горящих помещений. Таким образом, водяные завесы могут выполнять раздельно или в совокупности две основные функции:

  • экранирование тепловых потоков, дыма и токсичных продуктов горения с целью исключения распространения пожара и его опасных факторов за пределы водяных завес;
  • охлаждение технологического оборудования с целью исключения нагрева его конструкций до предельно допустимых температур.

Дренчерные завесы можно классифицировать:

по области их применения:

1.1. в театрах, для защиты проемов портала сцены, арьерcцены, карманов сцены, склада декораций .

Дренчеры устанавливают под колосниками сцены и арьерсцены, под нижним ярусом рабочих галерей и соединяющими их нижними переходными мостиками, в сейфе скатанных декораций и во всех проемах сцены, включая проемы портала, карманов и арьерсцены, а также части трюма, занятой конструкциями встроенного оборудования сцены и подъемно-опускных устройств. Орошение противопожарного занавеса следует предусматривать со стороны сцены. Расстановку дренчерных оросителей производят, исходя из следующих условий: расход воды на орошение проемов сцены принимается 0,5 л / с на 1 м проема, на орошение портала сцены - не менее 0.5 л / с на 1 м ширины портала при его высоте до 7.5 м и 0.7 л / с на 1 м при высоте более 7.5.

1.2. вместо противопожарных стен 1-го типа для деления зданий на пожарные отсеки в общественных, административных и других зданиях (рис. 1).

Рис.1.

В зданиях вокзалов вместо противопожарных стен допускается устройство водяных дренчерных завес в две нити, расположенных на расстоянии 0.5 м и обеспечивающих интенсивность орошения не менее 1 л / с на 1 м длины завес. Время работы завес - не менее 1 ч.

1.3. для сообщения помещений для хранения автомобилей на этаже с помещениями другого назначения в стоянках автомобилей .

Сообщение помещений для хранения автомобилей на этаже с помещениями другого назначения или смежного пожарного отсека допускается через тамбуршлюз с подпором воздуха при пожаре или с устройством дренчерной завесы над проемом со стороны автостоянки.

1.4. для защиты постоянно открытых технологических проемов в производственных и складских зданиях.

При невозможности устройства в противопожарных преградах дверей, ворот, люков и клапанов - в противопожарных преградах, отделяющих помещения категории В от других помещений, следует предусматривать комплекс мероприятий по предотвращению распространения пожара и проникания горючих газов, паров легковоспламеняющихся и горючих жидкостей, пыли, волокон, способных образовывать взрывоопасные концентрации, в смежные этажи и помещения. Эффективность этих мероприятий должна быть обоснована.

1.5. в местах примыкания эвакуационных лестниц к галереям и эстакадам поперек конвейерных лент в складах лесных материалов, а также в местах примыкания галерей и эстакад к зданиям .

В местах примыкания галерей и эстакад к зданиям и помещениям категорий А, Б и В, перегрузочным узлам следует предусматривать дренчерные завесы с расходом воды не менее 1 л / с на 1 м ширины проема либо открытые тамбур-шлюзы длиной не менее 4 м, оборудованные автоматическими установками пожаротушения с расходом воды 1 л / с на 1 м2 пола тамбура. В местах примыкания эвакуационных лестниц к галереям и эстакадам поперек конвейерных лент следует предусматривать дренчерные завесы с сухотрубами диаметром 77 мм, оборудованными пожарными соединительными головками для подключения пожарных машин.

1.6. для отделения технологической площадки от танкеров на причальных комплексах для перевалки нефти и нефтепродуктов (рис. 2);

Рис.2.

1.7. для охлаждения горящего и соседних резервуаров в резервуарных парках (рис.3).

Стационарная установка охлаждения резервуара состоит из горизонтального секционного кольца орошения (оросительного трубопровода с устройствами для распыления воды), размещаемого в верхнем поясе стенок резервуара, сухих стояков и горизонтальных трубопроводов, соединяющих секционное кольцо орошения с сетью противопожарного водопровода, и задвижек с ручным приводом обеспечения подачи воды при пожаре на охлаждение всей поверхности резервуара и любой ее четверти или половины (считая по периметру) в зависимости от расположения резервуаров в группе.

Рис. 3.

1.8. в саунах ;

Помещение парильной следует оборудовать по периметру дренчерным устройством (из перфорированных сухотрубов, присоединенных к внутреннему водопроводу) с управлением перед входом в парильную.

по виду использованных оросителей :

  • специальные оросители для дренчерных завес в проемах (рис. 4);
  • специальные оросители для дренчерных завес на причальных комплексах;
  • обычные дренчеры;

Рис. 4.

по виду пуска:

  • автоматический пуск от автоматической установки пожаротушения и / или от автоматической пожарной сигнализации;
  • ручной дистанционный пуск от кнопки дистанционного пуска (электрический);
  • ручной местный пуск от кнопки ручного пуска (электрический) и / или от крана включения завесы (механический);

по нормативной интенсивности:

  • 1 л / с на 1 м длины завесы (стандартно для большинства объектов);
  • 0,7 л / с на 1 м длины завесы (используется в театрах);
  • 0,5 л / с на 1 м длины завесы (используется в театрах);
  • индивидуально для объекта в соответствии с согласованными Техническими условиями, техническими решениями, компенсирующими мероприятиями.

2. Дренчерная завеса как компенсирующее отступления от противопожарных норм мероприятие. Особенности применения дренчерных завес

В больших по площади торгово-развлекательных центрах, гипермаркетах в последние 10 лет, для того чтобы не выделять противопожарными стенами 1-го типа (REI150) пожарные отсеки и сохранить необходимую торговую или другую площадь, широко стали применяться дренчерные завесы. Длина реально проектируемых сегодня дренчерных завес, используемых в качестве компенсирующего мероприятия вместо противопожарных стен, достигает 250 м. При этом «предел огнестойкости», если так можно выразиться, дренчерной завесы, работающей по проекту, - 1 час, в лучшем случае EI60. Причем реальных исследований и огневых испытаний, подтверждающих хотя бы эти данные, проектировщиками и заказчиками не проводится. Предположим ситуацию пожара в торговом центре с хранением товара на витринах или стеллажах. Сможет ли дренчерная завеса сдерживать пожар при горении витрин или стеллажей в случае, если завеса расположена перпендикулярно им? А если завеса расположена параллельно стеллажам, и в результате металлические конструкции стеллажей через 8-15 минут развития пожара не смогли удерживать товары, и горящие товары рассыпались по торговому залу, в том числе и перелетев через дренчерную завесу? Продолжат ли они гореть в другом пожарном отсеке? Сможет ли вообще дренчерная завеса сдерживать пожар как противопожарная стена 1-го типа?

Среди проектировщиков и архитекторов отсутствует единое мнение, есть ли необходимость суммировать площади нескольких этажей, когда они объединены открытым проемом или атриумом с открытыми лестницами, эскалаторами и лифтами. Существуют технические решения ограждать открытые проемы по периметру дренчерными завесами. В этом случае с большой долей вероятности пламя, дым и токсичные продукты горения не проникнут с горящего этажа на другие этажи через открытые проемы или атриум. Однако встречаются и варианты, в которых предлагается увеличить количество спринклеров по периметру открытых проемов. Неочевидна не только эффективность, но и целесообразность такого технического решения.

При нормативной интенсивности орошения расход воды численно равен ширине постоянно открытого проема, в некоторых случаях несколько сотен литров в секунду. Например, работа дренчерной завесы в течение одного часа для защиты проема 100 м потребует расхода воды 100 л / с. Это повлечет за собой установку насосов электрической мощностью 150-200 кВт и резервуара 400 м3. При этом необходимо также учитывать, что расход дренчерной завесы необходимо суммировать с расходом воды на спринклерную установку пожаротушения и на пожарные краны внутреннего противопожарного водопровода.

Проектировщиками и заказчиками должен приниматься во внимание тот факт, что при пожаре в защищаемое помещение будет вылито те же 400 м3 воды.

Необходимо отметить, что не распространено так широко применение защитных экранов, спускающихся с перекрытия, которые могли бы быть особенно эффективны в сочетании с дренчерными завесами.

Для проектирования и применения дренчерных завес во всех других случаях, кроме , особенно в качестве компенсирующего мероприятия, организациями, имеющими лицензию, должны быть разработаны Технические условия, отражающие специфику противопожарной защиты конкретного объекта. Технические условия должны быть согласованы с ГПН МЧС России.

3. Методика проектирования и расчета дренчерных завес

Структурная схема типовой дренчерной завесы изображена на рис. 5. Методика расчета дренчерных завес приведена в . Специальные оросители для дренчерных завес выпускаются Бийским заводом «Спецавтоматика», а также ведущими производителями пожарно-технического оборудования в мире, хотя в отечественной практике часто встречаются случаи проектирования водяных дренчерных завес на оросителях общего назначения. При выборе основных характеристик оросителя необходимо провести перерасчет интенсивности орошения в удельный расход, приходящийся на 1 м ширины завесы.

Рис.5. Схема дренчерной завесы: 1 – специальный дренчер; 2 – ширина проема в противопожарной преграде; 3 – реле потока; 4 – клапан (включение дренчерной завесы автоматически); 5 – кран (включение дренчерной завесы вручную на месте); 6 – прибор управления пожарный; 7 – кнопка дистанционного пуска (включение дренчерной завесы вручную дистанционно)

При этом нормативным параметром является интенсивность орошения, а проектными параметрами - вид оросителя, напор на оросителе, расстояние между оросителями, диаметр трубопровода, на котором размещены оросители, высота установки оросителей.

Несмотря на отсутствие статистических данных, результатов экспериментов одним из основных компенсирующих мероприятий, направленных на снижение пожарной опасности при значительном превышении площадей пожарных отсеков, является применение дренчерных завес, разделяющих помещения большой площади. Завесы получили широкое распространение, поскольку других возможностей увеличить площадь пожарного отсека, в том числе нормативных, у проектировщиков сегодня попросту нет.

Литература

  1. ГОСТ 54043-2002. Установки водяного и пенного пожаротушения автоматические. Оросители. Общие технические требования. Методы испытаний.
  2. СНИП 2.11.03-93. Склады нефти и нефтепродуктов. Противопожарные нормы.
  3. СНИП 21-02-99*. Стоянки автомобилей.
  4. СНИП 2.08.02-89*. Общественные здания и сооружения.
  5. СНИП 21?03-2003. Склады лесных материалов. Противопожарные нормы.
  6. СНИП 2.08.01-89*. Жилые здания.
  7. СНИП 31-01-2003. Здания жилые многоквартирные.
  8. ТСН 21-303-2003. Жилые здания. Требования пожарной безопасности.
  9. ВСН 12-87. Причальные комплексы для перегрузки нефти и нефтепродуктов.
  10. Мешман Л. М., Цариченко С. Г., Былинкин В. А., Алешин В. В., Губин Р. Ю. Проектирование водяных и пенных автоматических установок пожаротушения /Под общ. ред. Н. П. Копылова. - М.: ВНИИПО МЧС РФ, 2002. - 413 с.
  11. Мешман Л. М., Цариченко С. Г., Былинкин В. А. и др. Оросители водяных и пенных автоматических установок пожаротушения /Под общ. ред. Н. П. Копылова. - М.: ВНИИПО, 2002. - 315 с.
  12. НПБ 88-2001*. Установки пожаротушения и сигнализации. Нормы и правила проектирования.
  13. Ороситетель дренчерный для водяных завес «ЗВН»: Пособие по применению. - Бийск: ЗАО «ПО «Спецавтоматика», 2005.
  14. СНИП 31-05-2003. Общественные здания административного назначениия.

    Принятие новых стандартов на технические средства пожарной автоматики не может за собою не повлечь и изменение требований на их применение, т. е. построение из них систем пожарной автоматики и в первую очередь это касается вопросов проектирования. Поэтому практически одновременно с разработкой новых межгосударственных стандартов началась работа по разработке нового свода правил по проектированию СПС и СУСПЗ.

    На основании решения совета Евразийской экономической комиссии от 01.10.2014 № 79 "О плане разработки технических регламентов Евразийского экономического союза и внесения изменений в технические регламенты Таможенного союза" был разработан технический регламент Евразийского экономического союза "О требованиях к средствам обеспечения пожарной безопасности и пожаротушения" . Решением № 40 от 23.06.2017 он был принят советом Евразийской экономической комиссии и вступает в силу с 01.01.2020.

    Ни одна система противопожарной защиты зданий и сооружений не может обойтись без применения пожарных приборов управления. Приемно-контрольные приборы вместе с пожарными извещателями только обнаруживают пожар, а вот далее уже приборы управления реализуют задачи по эвакуации людей в безопасную зону, организации автоматического пожаротушения и т.п. И очень трудно сказать, что важнее в этой связке – обнаружить возгорание или обеспечить своевременную, безопасную для людей эвакуацию их горящего здания.

    Когда речь заходит про надежность, то все говорят про высоконадежные изделия и технологии и никто не пытается заводить разговоры о применении оборудования низкой надежности в какой-либо отрасли. Разумное сочетание достаточности уровня нормативных требований с достигнутым уровнем надежности в современной технике – это тот компромисс, который должен отслеживаться регулятором рынка в соответствующей отрасли. Процесс этот может быть только перманентным, а постоянное запаздывание нормативных требований за уровнем продукции передовых мировых производителем можно считать естественным состоянием дел. Но когда такое запаздывание длится десятилетиями, то такое бездействие регулятора рынка реально превращает его в "тормоз прогресса".

    Устойчивость СПС и ее компонентов. Надежность и живучесть. Обзор статей "Основы построения пожарной сигнализации"

    Как видно из самого названия, данный раздел посвящен вопросам устойчивости СПС. Так уже сложилось, что в основном, рассматривая вопрос устойчивости, говорят о надежности и эффективности систем.


Почему вода не тушит?

Экспертный обзор ошибок, допускаемых при проведении гидравлического расчета автоматической установки водяного пожаротушения (АУВПТ).

Как часто в попытках оптимизировать при проектировании, многие «специалисты» на выходе получают весьма неэффективную установку водяного пожаротушения.

В настоящей статье изложены некоторые наблюдения автора про тонкости гидравлического расчета установок водяного пожаротушения и ошибки, которые необходимо избегать при проведении его экспертизы. Приводятся частичный анализ существующей официальной методики расчета и некоторые выводы из собственного опыта проектирования.

1. Эпюры и графики вместо расчетов.

Многие проектировщики ошибочно определяют Давление (Р) на диктующем оросителе расчетным путем в зависимости от Коэффициента производительности оросителя (Кпр.) и требуемого Расхода (Q) данного оросителя. При этом требуемый Расход принимается пу¬тем умножения нормативной интенсивности на площадь защищаемую оросителем, которая указана в паспорте этого оросителя.

Например, если требуемая интенсивность 0,08 л/с на 1 м кв., а защищаемая оросителем площадь составляет 12 м кв., то расход оросителя принимается 0,96 л/с. А необходимое на оросителе давление высчитывается поформу-ле Р=(д/10*Кпр.)л2.

Этот вариант был бы верен, если бы весь объем воды, выходящий из оросителя, приходился бы только на его защищаемую площадь и при этом еще равномерно распределялся по всей данной площади.

Но фактически часть воды из оросителя распределяется за пределы данной защищаемой оросителем площади. Поэтому, для правильного определения давления на диктующем оросителе необходимо использовать только эпюры орошения или паспортные данные, где указано, какое необходимо давление создать перед оросителем, чтобы он обеспечил требуемую интенсивность на защищаемой площади.

Это требование указано в 1-ой части пункта В.1.9 приложения «В» к СП 5.13130:

«...определяется с учетом нормативной интенсивности орошения и высоты расположения оросителя по эпюрам орошения или паспортным данным давление, которое необходимо обеспечить у диктующего оросителя...».

2. Почему диктующий ороситель не главный?

Расход всей секции часто принимается путем простого умножения минимальной защищаемой площади (указанной в таблице 5.1 СП 5.13130 для спринклерной АУП) на нормативную интенсивность или просто по минимальному требуемому расходу, указанному в таблицах 5.1, 5.2, 5.3 СП 5.13130.

Хотя в настоящее время в соответствии с методикой расчета, изложенной в приложении «В» к СП 5.13130 требуется вначале правильно определить расход самого удаленного и высокорасположенного оросителя (диктующего оросителя), затем рассчитать потери давления на участке от диктующего оросителя до следующего, потом с учетом этих потерь рассчитать давление на втором оросителе (ведь давление на нем будет больше, чем на диктующем). Т.е. необходимо определять расход каждого оросителя, находящегося на защищаемой данной установкой площади. При этом необходимо учитывать, что расход оросителей, установленных на распределительной сети, возрастает по мере удаления от диктующего оросителя, т.к. дав¬ление на них также возрастает по мере приближения к месту расположения узла управления.

Далее необходимо просуммировать расход всех оросителей, приходящихся на защищаемую площадь для данной группы помещений и сравнить этот расход с минимальных (нормативным) расходом, указанным в таблицах 5.1, 5.2, 5.3 СП 5.13130. Если расчетный расход будет менее нормативного, то расчет необходимо продолжать (учитывать последующие оросители, размещенный на трубопроводах) до превышения значения фактического расхода над нормативным.

3. Не все струи одинаковые...

Аналогична ситуация при определении расходов пожарных кранов при проектировании совмещенной установки водяного по¬жаротушения и системы внутреннего противопожарного водопровода.

Первично расходы на пожарные краны определяются по таблицам 1 и 2 СП 10.13130, в зависимости от назначения объекта и его параметров (этажности, объема, степени огнестойкости и категории). Но во втором абзаце пункта 4.1.1 СП 10.13130 указано, что «Расход воды на пожаротушение в зависимости от высоты компактной части струи и диаметра спрыска следует уточнять по таблице 3».

Например, для общественного здания определили 2 струи по 2,5 л/с. Далее, по таблице 3 смотрим, что расход 2,6 л/с может быть обеспечен при длине пожарного рукава 10 м только при давлении 0,198 МПа перед клапаном пожарного крана DN65 и при диаметре спрыска наконечника пожарного ствола 13 мм. Значит и ранее определенный для каждого пожарного крана расход (2,5 л/с) будет увеличен как минимум до 2,6 л/с.

Далее, если у нас не один пожарный кран (две и более струи), то по аналогии с расчетом спринклерной установки, необходимо произвести расчет потерь давления на участке от первого (диктующего) пожарного крана до второго. Затем необходимо определить фактическое давление, которое будет у клапана второго пожарного крана с учетом его геометрической высоты, длины и диаметра трубопровода. Если давление больше, чем на первом ПК, то и расход второго ПК будет больше. А если давление меньше, то необходимо выполнить соответствующую поправку давления на первом ПК таким образом, чтобы давление на клапане второго ПК соответствовало ранее принятым (уточненным) по таблице 3 СП 10.13130.

Если же в системе три и более задействованных пожарных крана (струй), то расчет такой системы усложняется в разы и провести его вручную весьма трудоемко.

4. Штраф за превышение скорости.

При проведении гидравлического расчета АУВПТ важно, помимо расчета основных параметров (давления и расхода), учитывать несколько других значимых параметров и следить, чтобы они также были в норме. Например, нельзя превышать предельные скорости движения воды или раствора пенообразователя в напорных (питающих, распределительных, подводящих) трубопроводах более 10 м/с, и во всасывающих - более 2,8 м/с.

Стоит отметить, что скорость тем выше, чем больше значение расхода, а значит, при проведении расчета по мере удаления от диктующего оросителя и приближения к узлу управления, скорость в ветвях и рядках будет возрастать. Следовательно, диаметры распределительных трубопроводов, принятые в начале расчета для ветвей с диктующим оросителем, могут не пройти по параметрам скорости для ветвей в конце расчетной защищаемой площади.

5. Это у нас кладовая, но мы здесь вообще ничего не храним.

В соответствии с примечаниями 1 и 2 приложения «Б» к СП 5.13130:

«1. Группы помещений определены по их функциональному назначению. В тех случаях, когда невозможно подобрать аналогичные производства, группу следует определять по категории помещения.

С этим вроде все понятно и, как правило, не вызывает вопросов. Однако далее в примечании 3 указано, что если складское помещение встроено в здание, помещения которого относятся к 1-ой группе, то параметры для такого (складского) помещения следует принимать по 2-ой группе помещений.

Например, в торговом центре или обычном магазине ко 2-ой группе у нас могут относиться так называемые кладовые, подсобки, гардеробы, бельевые и прочие помещения хранения, в которых величина удельной пожарной нагрузки составляет от 181 до 1400 МДж/м кв. (категория ВЗ).

Следовательно, если указанные помещения разных групп у нас защищаются одной секцией пожаротушения, то проектировщик должен сначала сделать расчет для всех помещений 1-ой группы, затем отдельно расчеты для каждого помещения 2-ой группы, потом выбрать диктующие параметры данной секции и не забыть скорректировать давление и расход для расчетных участков, которые не являются диктующими.

Кстати, далее в примечании 4 указано, что, если помещение относится ко 2-ой группе помещений, и величина удельной пожарной нагрузки более 1400 МДж/м кв. или более 2200 МДж/м кв., то интенсивность орошения следует также увеличивать в 1,5 или 2,5 раза соответственно. Данный случай больше относится к производственным объектам защиты, но требует, чтобы с расчетом водяного пожаротушения параллельно проводился расчет категорий помещений по взрывопожарной и пожарной опасности.

6. А эту трубу можно не учитывать...

Очень редко встречающаяся практика

Это расчет потерь давления в подводящем трубопроводе (от узла управления до напорного патрубка пожарного насоса). Как правило, обычно расчет ведется в лучшем случае до узла управления, хотя в зависимости от диаметра подводящего трубопровода и количества узлов управления, установленных на нем, потери давления на данном участке могут быть весьма существенными.

7. Семимильными шагами.

Часто ошибочно максимальное расстояние между оросителями принимается по таблице 5.1. СП 5.13130, т.е. 4 или 3 метра соответственно. Однако, для обеспечения равномерного орошения, максимальное расстояние между оросителями (при расположении их по квадрату) должно быть не более стороны квадрата, вписанного в окружность, образуемой защищаемой оросителем площади. Например, при защищаемой площади 12 м кв. расчетное расстояние между оросителями будет составлять всего 2,76 метра.

8. Три по сто в один стакан.

Не производится расчет количества и пропускной способности патрубков для подключения передвижной пожарной техники (пожарных автомобилей) с учетом максимального расхода, выдаваемого одним пожарным автомобилем на один такой патрубок. Суть в том, что стандартный пожарный автомобиль (например, автоцистерна АЦ-40(130)) имеет центробежный насос с расходом 40 л/с, но выдать этот расход он может только через два напорных патрубка (на каждый по 20 л/с). Даже возимый на автоцистерне лафетный ствол с расходом 40 л/с подключается к автомобилю также через два пожарных рукава.

9. Пожар может быть и НЕ в самом дальнем помещении.

Не производится сравнение требуемых расхода и давления в зависимости от месторасположения расчетной защищаемой площади. Необходимо рассматривать как минимум два варианта: в наиболее удаленной части секции (как указано в методике СП 5.130130), и, наоборот - в расположенной непосредственно вблизи у узла управления. Как правило, во втором случае расход получается больше.

10. И напоследок опять про дренчерную завесу...

Присоединяемые к трубопроводам спринклерной установки пожаротушения дренчерные завесы вообще редко когда рассчитываются в полном объеме, а их расход принимается формально из расчета 1 л/с на 1 м такой завесы. При этом расстояния между дренчерными оросителями также принимаются необоснованным и без учета взаимного действия соседних оросителей на каждую защищаемую точку. Здесь, как и при расчете спринклерной установки, необходимо учитывать увеличение расхода каждого оросителя при удалении от диктующего (в сторону расположения узла управления), суммировать эти расходы, а потом корректировать полученный расход с учетом фактического давления в точке присоединения трубопровода дренчерной завесы с общей системе трубопроводов установки.

В данном видеоматериале демонстрируется и разбирается 10-ть распространенных ошибок, которые допускаются при проведении гидравлического расчета установок водяного пожаротушения. Видео в двух частях. Общая продолжительность - около 1 часа.

Предназначены для локализации возгораний и тушения пожаров в автоматическом режиме. Главное отличие этих систем от спринклерных установок автоматического пожаротушения является отсутствие в их конструкции тепловых замков с повышенной плавкостью.

Термин «дренчер» произошел от английского слова «орошать». Таким образом, дренчер, устанавливаемый на пожарных водопроводах, является оросителем. В зависимости от направления пожарных трубопроводов дренчеры могут располагаться как горизонтально, так и вертикально.

Область применения дренчерных установок пожаротушения

Основная задача систем пожаротушения состоит в том, чтобы вовремя среагировать на возникновение пожара и локализовать его распространение, а в случаях небольших возгораний оперативно потушить.

Нашли широкое применение в производствах с повышенной пожароопасностью, благодаря тому, что охватывают большую площадь возгорания, а также имеют возможность создавать водяные завесы, в отличие спринклерных установок.

Дренчерные установки пожаротушения устанавливаются на предприятиях, имеющих пожароопасное или взрывоопасное производство, а также, в неотапливаемых помещениях, в которых может быть отрицательная температура. Вода в пожарный водопровод начинает поступать только в случае срабатывания датчиков пожарной сигнализации. В остальное время водопровод остается в сухом состоянии, то есть без воды.

Конструктивные особенности дренчерных систем

В зависимости от способа управления системы пожаротушения подразделяются на две большие группы:

  • с ручным управлением;
  • с автоматическим управлением.

При автоматическом управлении установками пожаротушения на пожарном водопроводе в обязательном порядке устанавливается клапан группового действия, который монтируется выше задвижки, открывающей воду. Этот клапан имеет связь с системой пожаротушения, от которой поступают сигналы о возникновении пожара, и пожарным водопроводом, который подает воду в систему. В оросительных системах может использоваться не только вода, но и некоторые газы.

Запуск в действие систем пожаротушения осуществляется следующими способами:

  • с использованием клапанов группового действия. Такой тип запуска чаще всего применяется в гидравлических, пневматических и тросовых установках;
  • с помощью задвижек - клинкетов и с помощью электроприводных вентилей. Этот способ характерен для электрических установок (пожарная сигнализация).

Обязательно должны иметь два источника воды. При израсходовании лимита воды в первом источнике после первых десяти минут тушения очага возгорания должна быть предусмотрена возможность подключиться ко второму источнику воды. Объема второго источника воды должно хватить не менее, чем на час тушения пожара при максимальном расходе воды.

В промышленном производстве существуют два вида систем с дренчерными оросителями:

  • заливные системы, где сами дренчеры монтируются так, чтобы розетки были направлены вверх. Используются на взрывопожароопасных производствах;
  • сухотрубные системы. В этом случае розетки могут устанавливаться в любом направлении. Такие системы могут применяться для остальных видов производств.

В связи с тем, что один ороситель рассчитан на площадь примерно 9 м2, расстояние между соседними оросителями должно быть три метра, а между оросителем и стеной не менее полутора метров. Если предполагается организовывать тушение вертикальных поверхностей или с применением водяной завесы, оросители устанавливают из расчета пол-литра воды в секунду на один метр ширины поверхности.

Дренчерные установки пожаротушения и принцип их работы

Побудительные установки, посредством которых происходит подача воды, бывают следующих типов:

1. Электрическая установка или пожарная сигнализация, которая при изменении одной из заданных характеристик подает сигнал в блок управления насосной станции на активацию подачи воды в водопровод.

2. Тросовая установка, как правило, устанавливается в помещениях, где круглый год поддерживается постоянный температурный режим с плюсовой температурой. Принцип её работы состоит в следующем – трос с легкоплавким замком соединяется с клапаном, находящемся на наполненном водой побудительном водопроводе. Легкоплавкий замок при повышении температуры плавится, трос обрывается и открывает клапан побудительного трубопровода. Вода подается в узел управления насосной станции, что приводит в действие электрический привод задвижки. Вода начинает поступать в дренчеры.

3. Аналогичный принцип работы имеют пневматические дренчерные установки пожаротушения . Принципиальным отличием пневматических установок от гидравлических состоит в том, что в побудительном трубопроводе находится не вода, а сжатый газ. Поэтому, область применения таких установок значительно шире, так как газу не страшны отрицательные значения температур.

Водяная завеса

Дренчерная система пожаротушения используется на различных объектах. Ее возможность тушить возгорание с помощью водяной завесы получила широкое распространение. При обнаружении признаков пожара, таких как появление дыма или повышение температуры, срабатывает пожарная сигнализация и подается сигнал на включение дренчерной установки. А она, в свою очередь, создает завесу из воды, которая препятствует перекидыванию огня на другие конструкции или в другие помещения. Это позволяет очень быстро локализовать очаг возгорания и предотвратить дальнейшее распространение огня.

Использование таких систем позволяют не только быстро потушить пожар, но и препятствовать распространению дыма и других токсичных продуктов горения.

Опросный лист на типовые станции РОДНИК для водоснабжения и пожаротушения

Примечание: Заполните известные вам пункты

Среди различных способов локализации и устранения источников возгорания в зданиях любого назначения особое место занимает дренчерная система пожаротушения. Она является одной из наиболее распространенных систем, поскольку отличается надежностью, проверенной временем. Цель данной статьи – описать устройство и принцип работы этой системы водяного пожаротушения.

Установки подобной конструкции появились еще в начале прошлого века в Англии. Сеть разветвленных по цехам трубопроводов в случае пожара заполнялась водой с помощью ручных помп и предназначалась для гашения огня по всей площади помещения. С тех пор назначение дренчерных систем пожаротушения не изменилось, они используются, как правило, в производственных помещениях с повышенной пожарной опасностью, например, на деревообрабатывающих предприятиях, в цехах химических производств, где присутствует большое количество легковоспламеняющихся материалов и так далее.

Задачей данных установок является устранение источников возгорания путем орошения водой большой площади либо сдерживание пожара в определенных границах с помощью водных дренчерных завес.

Конструкция дренчерной установки очень схожа со спринклерной системой, где от узла пожарных насосов по зданию расходится сеть трубопроводов. Основной элемент системы – это ороситель, не имеющий теплового замка и всегда находящийся в открытом состоянии. Этим и отличаются спринклерные и дренчерные установки пожаротушения, трубопроводы в них в обычной обстановке пусты, а заполняются водой лишь по сигналу тревоги.

Исключение – дренчерное водяное пожаротушение взрывоопасных производств. Здесь трубы заполнены водой, но без избыточного давления, а оросители установлены розетками вверх. Эти мероприятия проводятся с целью уменьшения промежутка времени между сигналом тревоги и началом гашения огня.

Устройства для непосредственного распыления воды различаются двух типов:

  • распылители лопаточного типа с диаметром отверстия 12 мм;
  • дренчерные оросители для водяной завесы, их диаметры бывают 10, 12, 16 мм.

Орошаемая площадь горизонтальной поверхности от каждого распылителя принимается равной ориентировочно 9 м2, если в технической документации на изделие не прописаны другие данные. Поскольку в схеме используется принцип перекрывания зон орошения, то шаг установки дренчеров составляет 3 м, а расстояние до ближайшей стены должно составлять 1.5 м. Если требуется осуществлять дренчерное пожаротушение вертикальной поверхности или распылять воду над полом, то шаг установки принимается по ее расходу, равному 0.5 л/сек на 1 м2.Все основные элементы дренчерной установки показаны на схеме:

Принцип работы дренчерной системы

По способу срабатывания при возгорании системы делятся на 2 вида:

  1. Путем автоматического открывания клапанов, установленных на магистральном трубопроводе.
  2. Ручным способом, с помощью задвижки.

Примечание. В последнее время задвижки снабжаются электроприводами, поэтому для активации пожаротушения достаточно просто нажать соответствующую кнопку. Групповой клапан открывается автоматически под воздействием тросового, пневматического или гидравлического привода.

При нормальной обстановке сухотрубная система пожаротушения заполняется водой только до узла управления, в состав которого входит групповой клапан (выше на схеме трубы с водой показаны синим цветом). После возникновения очага возгорания и повышения температуры срабатывает тепловой пожарный извещатель, передавая сигнал тревоги на шкаф управления. Оттуда в автоматическом режиме поступает команда на гидравлический или пневматический привод, открывающий клапан на магистральном трубопроводе. Дренчерные системы пожаротушения также могут включаться и от тросового привода. В нем трос, расположенный в помещении, закреплен зажимами с плавкими вставками, что разрушаются при нагреве.

Тросовой привод

После открытия клапана или задвижки пожарная сеть начинает заполняться водой, одновременно включается в работу главный пожарный насос, обеспечивая большой расход воды, составляющий 0.1 л/сек на 1 м2 защищаемой поверхности. В отдельных случаях, например, когда на объекте имеются материалы, содержащие резину, этот расход может быть увеличен до 0.3 л/сек. В этом и заключается принцип работы дренчерной системы пожаротушения, где для гашения пламени или создания водяных завес используются большие объемы воды.

В первый час работы насосная станция опорожняет пожарный резервуар, обеспечивая высокий расход воды для интенсивного орошения площадей. После того как емкость опустеет, насос качает воду из общей сети. При этом расход уменьшается, поскольку центральный водопровод на это не рассчитан, поэтому эффективность системы падает.

Заключение

В силу своих особенностей дренчерная система применяется избирательно, поскольку в результате обильного орошения она может нанести урон не меньший, чем сам пожар. По этой причине дренчеры устанавливаются только в коридорах офисных зданий с целью создания водяных завес

Всё про ультразвуковые увлажнители воздуха
Пожарный гидрант: типы, назначение, установка, схема Мобильные кондиционеры без воздуховода: особенности эксплуатации Как работает система чиллер-фанкойл
Система газового пожаротушения: модули, установка, монтаж



Новое на сайте

>

Самое популярное